首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
环保管理   15篇
综合类   8篇
基础理论   16篇
污染及防治   8篇
评价与监测   12篇
社会与环境   3篇
灾害及防治   1篇
  2023年   2篇
  2020年   2篇
  2017年   2篇
  2016年   2篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1990年   3篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有63条查询结果,搜索用时 19 毫秒
21.
Eutrophication of waterways through delivery of phosphorus (P) and nitrogen (N) from farmland is a problem in many countries. Loss of nutrients from grazed grassland via overland flow is well demonstrated, but the sources of these nutrients and the processes controlling their mobilization into water are not well understood. Much of the nutrient loss in overland flow from grazed pastures may be due to generally increased fertility of the soil–plant system (i.e. background or ‘systematic’ nutrient loss) rather than to immediate loss after fertilizer application [Nash, D., Clemow, L., Hannah, M., Barlow, K., Gangaiya, P., 2005. Modelling phosphorus exports from rain-fed and irrigated pastures in southern Australia. Aust. J. Soil Res. 43, 745–755]. The main aim of this study was to measure the effects of long-term (25 years) superphosphate (Ca(H2PO4)2 + 2CaSO4) fertilizer application (0–23 kg/(ha year)) on P and N in soil, plants, and potential background P and N movement in overland flow (generated using a rainfall simulator) from sheep-grazed pastures in southern Australia. Measurements were taken in autumn, under dry soil conditions, and in winter, under wet soil conditions, 12 and 15 months after the last fertilizer applications, respectively. Superphosphate application caused a strong increase in plant P, soil total P, Olsen P, and Colwell P; and a weaker increase in plant N, soil total N, and inorganic N (ammonium and nitrate). Soil P and N were concentrated in the surface 25 mm of soil. Soil water-extractable P, calcium chloride-extractable P, and calcium chloride organic P were in general only poorly associated with fertilizer application. The concentration of P and, to a lesser extent, the concentration of N in overland flow increased with increasing fertilizer application and showed strong seasonal differences (0.06–0.77 mg P/L and 0.6–5.5 mg N/L in autumn; 0.04–0.20 mg P/L and 0.4–1.7 mg N/L in winter). The P in overland flow was predominantly dissolved reactive P in autumn and particulate P in winter. The N in overland flow contained significant proportions of dissolved organic N, dissolved inorganic N (ammonium and nitrate), and particulate N. The concentrations of P and N in overland flow usually exceeded State water quality targets (<0.04 mg P/L and <0.90 mg N/L), suggesting that background losses of nutrients from these pasture systems could contribute to the eutrophication of waterways.  相似文献   
22.
Continued alteration of the nitrogen cycle exposes receiving waters to elevated nitrogen concentrations and forces drinking water treatment services to plan for such increases in the future. We developed four 2011–2050 land cover change scenarios and modeled the impact of projected land cover change on influent water quality to support long-term planning for the Minneapolis Water Treatment Distribution Service (MWTDS) using Soil Water and Assessment Tool. Projected land cover changes based on relatively unconstrained economic growth led to substantial increases in total nitrogen (TN) loads and modest increases in total phosphorus (TP) loads in spring. Changes in sediment, TN, and TP under two “constrained” growth scenarios were near zero or declined modestly. Longitudinal analysis suggested that the extant vegetation along the Mississippi River corridor upstream of the MWTDS may be a sediment (and phosphorus) trap. Autoregressive analysis of current (2008–2017) chemical treatment application rates (mass per water volume processed) and extant (2001–2011) land cover change revealed that statistically significant increases in chemical treatment rates were temporally congruent with urbanization and conversion of pasture to cropland. Using the current trend in chemical treatment application rates and their inferred relationship to extant land cover change as a bellwether, the unconstrained growth scenarios suggest that future land cover may present challenges to the production of potable water for MWTDS.  相似文献   
23.
We describe an infant born at 29 weeks' gestation with oligohydramnios sequence due to amniotic fluid leakage following chorionic villus sampling at 12 weeks. To our knowledge, this is the first such report.  相似文献   
24.
Cuticular hydrocarbon profiles are essential for nestmate recognition in insect societies, and quantitative variation in these recognition cues is both environmentally and genetically determined. Environmental cues are normally derived from food or nest material, but an exceptional situation may exist in the fungus-growing ants where the symbiotic fungus garden may be an independent source of recognition compounds. To investigate this hypothesis, we quantified the chemical profiles of the fungal symbionts of 18 sympatric colonies of Acromyrmex echinatior and Acromyrmex octospinosus and evaluated the quantitative variation of the 47 compounds in a multivariate analysis. Colony-specific chemical profiles of fungal symbionts were highly distinct and significantly different between the two ant species. We also estimated the relative genetic distances between the fungal symbionts using amplified fragment length polymorphism (AFLP) and correlated these with the overall (Mahalanobis) chemical distances between the colony-specific profiles. Despite the standardized laboratory conditions, the correlations were generally weak, but a statistically significant portion of the total variation in chemical profiles could be explained by genetic differences between the fungal symbionts. However, there was no significant effect of ant species in partial analyses because genetic differences between symbionts tend to coincide with being reared by different ant species. However, compound groups differed significantly with amides, aldehydes, and methyl esters contributing to the correlations, but acetates, alkanes, and formates being unrelated to genetic variation among symbionts. We show experimentally that workers that are previously exposed to and fed with the fungal symbiont of another colony are met with less aggression when they are later introduced into that colony. It appears, therefore, that fungus gardens are an independent and significant source of chemical compounds, potentially contributing a richer and more abundant blend of recognition cues to the colony “gestalt” than the innate chemical profile of the ants alone. Freddie-Jeanne Richard and Michael Poulsen contributed equally to this work.  相似文献   
25.
26.
27.
Within the Southeastern (SE) Coastal Plain of the U.S., numerous freshwaters and estuaries experience eutrophication with significant nutrient contributions by agricultural non-point sources (NPS). Riparian buffers are often used to reduce agricultural NPS yet the effect of buffers in the watershed is difficult to quantify. Using corrected Akaike information criterion (AICc) and model averaging, we compared flow-path riparian buffer models with land use/land cover (LULC) models in 24 watersheds from the SE Coastal Plain to determine the ability of riparian buffers to reduce or mitigate stream total nitrogen concentrations (TNC). Additional models considered the relative importance of headwaters and artificial agricultural drainage in the Coastal Plain. A buffer model which included cropland and non-buffered cropland best explained stream TNC (R 2 = 0.75) and was five times more likely to be the correct model than the LULC model. The model average predicted that current buffers removed 52 % of nitrogen from the edge-of-field and 45 % of potential nitrogen from the average SE Coastal Plain watershed. On average, 26 % of stream nitrogen leaked through buffered cropland. Our study suggests that stream TNC could potentially be reduced by 34 % if buffers were adequately restored on all cropland. Such estimates provide realistic expectations of nitrogen removal via buffers to watershed managers as they attempt to meet water quality goals. In addition, model comparisons of AICc values indicated that non-headwater buffers may contribute little to stream TNC. Model comparisons also indicated that artificial drainage should be considered when accessing buffers and stream nitrogen.  相似文献   
28.
The UK Climate Change Act (CCA) mandates an 80 % reduction in CO2 emissions by 2050. It is estimated that 3.2 M tonnes pa CO2 results from travel-related NHS business. The acquisition of an electric bicycle to replace a car for both commuting and home visits allowed comparison of fuel use and CO2 emissions over a 4-year period. The switch to the use of the electric bicycle reduced the average annual petrol use by 329 l, the energy consumption by 3,140 kWh and the CO2 released by 748 kg a year. Wider adoption of electric bicycles in urban General Practice will contribute to the requirements of the CCA though to have a significant effect on the current estimated commuting-related carbon footprint of the NHS (0.76 MT pa) would require two-thirds of the workforce to abandon their cars in favour of electric bicycles.  相似文献   
29.
Enterococci bacteria are used to indicate the presence of human and/or animal fecal materials in surface water. In addition to human influences on the quality of surface water, a cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattle may affect surface water quality directly by depositing nutrients and bacteria, and indirectly by damaging stream banks or removing vegetation cover, which may lead to increased sediment loads. This study used the State of Oregon surface water data to determine the likelihood of animal pathogen presence using enterococci and analyzed the spatial distribution and relationship of biotic (enterococci) and abiotic (nitrogen and phosphorous) surface water constituents to landscape metrics and others (e.g. human use, percent riparian cover, natural covers, grazing, etc.). We used a grazing potential index (GPI) based on proximity to water, land ownership and forage availability. Mean and variability of GPI, forage availability, stream density and length, and landscape metrics were related to enterococci and many forms of nitrogen and phosphorous in standard and logistic regression models. The GPI did not have a significant role in the models, but forage related variables had significant contribution. Urban land use within stream reach was the main driving factor when exceeding the threshold (> or =35 cfu/100 ml), agriculture was the driving force in elevating enterococci in sites where enterococci concentration was <35 cfu/100 ml. Landscape metrics related to amount of agriculture, wetlands and urban all contributed to increasing nutrients in surface water but at different scales. The probability of having sites with concentrations of enterococci above the threshold was much lower in areas of natural land cover and much higher in areas with higher urban land use within 60 m of stream. A 1% increase in natural land cover was associated with a 12% decrease in the predicted odds of having a site exceeding the threshold. Opposite to natural land cover, a one unit change in each of manmade barren and urban land use led to an increase of the likelihood of exceeding the threshold by 73%, and 11%, respectively. Change in urban land use had a higher influence on the likelihood of a site exceeding the threshold than that of natural land cover.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号