首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27769篇
  免费   287篇
  国内免费   337篇
安全科学   720篇
废物处理   1174篇
环保管理   3169篇
综合类   5497篇
基础理论   7120篇
环境理论   10篇
污染及防治   6996篇
评价与监测   1968篇
社会与环境   1571篇
灾害及防治   168篇
  2022年   246篇
  2021年   211篇
  2020年   188篇
  2019年   203篇
  2018年   389篇
  2017年   416篇
  2016年   599篇
  2015年   475篇
  2014年   795篇
  2013年   2097篇
  2012年   900篇
  2011年   1197篇
  2010年   1007篇
  2009年   1017篇
  2008年   1146篇
  2007年   1185篇
  2006年   1028篇
  2005年   922篇
  2004年   882篇
  2003年   893篇
  2002年   842篇
  2001年   1130篇
  2000年   777篇
  1999年   472篇
  1998年   296篇
  1997年   340篇
  1996年   351篇
  1995年   405篇
  1994年   389篇
  1993年   293篇
  1992年   334篇
  1991年   320篇
  1990年   346篇
  1989年   310篇
  1988年   283篇
  1987年   243篇
  1986年   252篇
  1985年   264篇
  1984年   247篇
  1983年   237篇
  1982年   230篇
  1981年   225篇
  1980年   185篇
  1979年   208篇
  1978年   191篇
  1977年   182篇
  1975年   164篇
  1974年   179篇
  1973年   163篇
  1972年   163篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
In the periods of summer and autumn bloom of the Stephanodiscus hantzschii Crun. in recreational water bodies, studies on the vertical distribution of chlorophyll a, its contents per unit biomass, efficiency in using photosynthetically active radiation (EPhAR), and assimilative activity of microalgae were performed. The results confirmed the existence of two ecophysiological forms of St. hantzschii and provided evidence that both forms are typically autotrophic and can efficiently use low-intensity PhAR for photosynthesis.  相似文献   
72.
73.
What is soil organic matter worth?   总被引:3,自引:0,他引:3  
The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.  相似文献   
74.
75.
Electroosmotic dewatering of dredged sediments: bench-scale investigation   总被引:1,自引:0,他引:1  
The Indiana Harbor (Indiana, USA) has not been dredged since 1972 due to lack of a suitable disposal site for dredged sediment. As a result of this, over a million cubic yards of highly contaminated sediment has accumulated in the harbor. Recently, the United States Army Corps of Engineers (USACE) has selected a site for the confined disposal facility (CDF) and is in the process of designing it. Although dredging can be accomplished rapidly, the disposal in the CDF has to be done slowly to allow adequate time for consolidation to occur. The sediment possesses very high moisture content and very low hydraulic conductivity, which cause consolidation to occur slowly. Consolidation of the sediment is essential in order to achieve adequate shear strength of sediments and also to provide enough air space to accommodate the large amount of sediment that requires disposal. Currently, it has been estimated that if a one 3-foot (0.9-m) thick layer of sediment was disposed of at the CDF annually, it would take approximately 10 years to dispose of all the sediment that is to be dredged from the Indiana Harbor. This study investigated the feasibility of using an electroosmotic dewatering technology to accelerate dewatering and consolidation of sediment, thereby allowing more rapid disposal of sediment into the CDF. Electroosmotic dewatering essentially involves applying a small electric potential across the sediment layer, thereby inducing rapid flow as a result of physico-chemical and electrochemical processes. A series of bench-scale electrokinetic experiments were conducted on actual dredged sediment samples from the Indiana Harbor to investigate dewatering rates caused by gravity alone, dewatering rates caused by gravity and electric potential, and the effects of the addition of polymer flocculants on dewatering of the sediments. The results showed that electroosmotic dewatering under an applied electric potential of 1.0VDC/cm could increase the rate of dewatering and consolidation by an order of magnitude as compared to gravity drainage alone. Amending the sediment with polymers at low concentrations (0.5-1% by dry weight) will enhance this dewatering process; however, the optimal polymer concentration and the cost-effectiveness of using polymers should be investigated further.  相似文献   
76.
77.
78.
Critical loads offer a unique way of evaluating impacts of acid deposition by quantifying environmental sensitivity. The critical loads of acidity for UK peat soils have been based upon an arbitrary reduction in pH of 0.2 units. This chemical shift needs to be better related to adverse effects on sensitive biological receptors. It is known that effective precipitation pH equates closely to soil solution pH, and the latter is directly linkable to biotic effects of pH change. On continuation of a long-term experiment assessing impacts of simulated acid rain on peat microcosms in a realistic outdoor environment, Calluna vulgaris continued to flourish at acid deposition loads well above the existing critical load. Calluna plants were harvested and analysed, and acid deposition treatments to the microcosms continued to allow natural vegetation to regenerate. A diverse mixture of moorland plants and bryophytes established at acidity treatments well above the existing critical load, and only a very high acid load resulted in no natural regeneration. A critical effective rain pH value of 3.6 is suggested as a basis for setting critical loads. At this pH, Calluna grows well, and a healthy diverse vegetation community re-establishes when harvested. It is suggested that the peat critical load should be set at the acid load that, at any specific site, would result in a mean effective precipitation pH of 3.6.  相似文献   
79.
A new methodological approach to the development of biological and technological safety standards for the impact of underground mining on the natural biota is proposed.  相似文献   
80.
New experimental data on biological productivity of plant communities in oligotrophic and mesotrophic bogs of the middle taiga subzone over the past five years are presented. The relationship between net primary production and the stock of live phytomass is estimated. The stock of necromass in oligotrophic bog ecosystems increases from west to east, while the stock of live phytomass and net primary production decrease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号