首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   1篇
  国内免费   2篇
安全科学   2篇
废物处理   2篇
环保管理   5篇
综合类   47篇
基础理论   16篇
环境理论   1篇
污染及防治   26篇
评价与监测   15篇
社会与环境   4篇
  2023年   1篇
  2022年   11篇
  2021年   6篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1967年   2篇
  1966年   1篇
  1965年   5篇
  1964年   3篇
  1963年   2篇
  1962年   5篇
  1961年   2篇
  1960年   4篇
  1959年   2篇
  1958年   2篇
  1956年   2篇
  1955年   4篇
  1954年   2篇
排序方式: 共有118条查询结果,搜索用时 484 毫秒
41.
This study attempted to determine the effects of heavy metals on the photosynthetic blue-green algae for their potential to use as a biosensor. The bioaccumulation of metals and its effects on pigments of Nostoc muscorum and Synechococcus PCC 7942 were assessed. The culture was grown in BG 11 liquid medium supplied with different metals like mercury (Hg), lead (Pb), and cadmium (Cd) and incubated (µM 20 concentrations) for 10 days under optimal conditions. The accumulated amounts of metals were determined by atomic absorption spectroscopy (AAS). The stress effects on photosynthetic pigment chlorophyll a (Chl a) were monitored by laser-induced fluorescence (LIF). Bio-concentration factor (BCF) reached a peak in cells on the 2nd day of incubation followed by a gradual reduction. The highest reduction in the pigment concentrations (Chl a and β carotene) was observed at 20?µM?L?1 Hg treatment. The results indicate that, cyanobacteria may serve as both potential species to be used as a biosensor and used to clean up heavy metals from contaminated water. These changes were analyzed with the long-term goal of exploiting cyanobacterial cells as biosensors.  相似文献   
42.
Release of chlorine gas causes deaths and injuries to workers and the public, resulting in the evacuation of communities and adversely affecting the environment as a whole. The off-site emergency plan is an integral part of any major hazard control system. This paper highlights some salient features of the emergency scenario from a chemical plant, which ultimately lead to fatal consequences all around upon releases of toxic chlorine gas. A typical scenario illustrating the dispersion model of chlorine (for three isopleths concentration) has been estimated by Complex Hazards Air Release Model (CHARM) software package. The enlarged form of this model diagram has been outlined on the area map of the study area for contingency planning. As a broad guide line to the district authorities for contingency planning, evacuation time has also been calculated with reference to a concentration level of 3 ppm chlorine.  相似文献   
43.
Homogeneous and vertically aligned silicon nanowires (SiNWs) were successfully fabricated using silver assisted chemical etching technique. The prepared samples were characterized using scanning electron microscopy, transmission electron microscopy and atomic force microscopy. Photocatalytic degradation properties of graphene oxide (GO) modified SiNWs have been investigated. We found that the SiNWs morphology depends on etching time and etchant composition. The SiNWs length could be tuned from 1 to 42 µm, respectively when varying the etching time from 5 to 30 min. The etchant concentration was found to accelerate the etching process; doubling the concentrations increases the length of the SiNWs by a factor of two for fixed etching time. Changes in bundle morphology were also studied as function of etching parameters. The SiNWs diameter was found to be independent of etching time or etchant composition while the size of the SiNWs bundle increases with increasing etching time and etchant concentration. The addition of GO was found to improve significantly the photocatalytic activity of SiNWs. A strong correlation between etching parameters and photocatalysis efficiency has been observed, mainly for SiNWs prepared at optimum etching time and etchant concentrations of 10 min and 4:1:8. A degradation of 92% was obtained which further improved to 96% by addition of hydrogen peroxide. Only degradation efficiency of 16% and 31% has been observed for bare Si and GO/bare Si samples respectively. The obtained results demonstrate that the developed SiNWs/GO composite exhibits excellent photocatalytic performance and could be used as potential platform for the degradation of organic pollutants.  相似文献   
44.
45.
46.
47.
48.
49.
50.
Ammonia (NH3) is emitted into the atmosphere by various industries and other sources and causes environmental pollution. Considering the hazards of ammonia, detecting leakage from vessels and pipes demands the use of sensors. Therefore, the development of NH3 gas sensors assumes considerable importance to researchers and regulators and to industry, businesses, and facilities that make, store, or use ammonia. The use of metal oxide sensors (MOS) for detecting NH3 gas, such as zinc oxide (ZnO), has been a topic of interest to researchers seeking methods to detect NH3 gas, even at low concentrations. In this article, an attempt has been made to review the research thus far published on the synthesis of ZnO‐based NH3 gas sensor materials, their characterization, and analyses of their performance. Finally, we make several recommendations regarding the scope of future research. For example, the kinetics of the sensor materials should be determined. Furthermore, extensive studies of gas–solid (NH3–ZnO) adsorption are proposed to ascertain the exact adsorption mechanism in terms of isotherm, kinetics, and diffusive mass transport, and to determine “reversibility” and “recovery” of sensor materials so they can continue sensing and activating alarms when necessary for practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号