首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   626篇
  免费   8篇
  国内免费   41篇
安全科学   30篇
废物处理   64篇
环保管理   55篇
综合类   98篇
基础理论   114篇
环境理论   1篇
污染及防治   254篇
评价与监测   35篇
社会与环境   19篇
灾害及防治   5篇
  2023年   8篇
  2022年   16篇
  2021年   10篇
  2020年   3篇
  2019年   13篇
  2018年   25篇
  2017年   28篇
  2016年   23篇
  2015年   24篇
  2014年   31篇
  2013年   56篇
  2012年   32篇
  2011年   46篇
  2010年   33篇
  2009年   35篇
  2008年   54篇
  2007年   41篇
  2006年   36篇
  2005年   25篇
  2004年   20篇
  2003年   16篇
  2002年   21篇
  2001年   13篇
  2000年   9篇
  1999年   9篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1994年   6篇
  1993年   4篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
  1961年   1篇
  1958年   2篇
排序方式: 共有675条查询结果,搜索用时 15 毫秒
631.
Jang M  Hwang JS  Choi SI 《Chemosphere》2007,66(1):8-17
Sequential washing techniques using single or dual agents [sodium hydroxide (NaOH) and hydrochloric acid (HCl) solutions] were applied to arsenic-contaminated soils in an abandoned iron-ore mine area. We investigated the best remediation strategies to maximize arsenic removal efficiency for both soils and arsenic-containing washing solution through conducting a series of batch experiments. Based on the results of a sequential extraction procedure, most arsenic prevails in Fe-As precipitates or coprecipitates, and iron exists mostly in the crystalline forms of iron oxide. Soil washing by use of a single agent was not effective in remediating arsenic-contaminated soils because arsenic extractions determined by the Korean standard test (KST) methods for washed soils were not lower than 6mg kg(-1) in all experimental conditions. The results of X-ray diffraction (XRD) indicated that iron-ore fines produced mobile colloids through coagulation and flocculation in water contacting the soils, containing dissolved arsenic and fine particles of ferric arsenate-coprecipitated silicate. The first washing step using 0.2M HCl was mostly effective in increasing the cationic hydrolysis of amorphous ferrihydrite, inducing high removal of arsenic. Thus, the removal step of arsenic-containing flocs can lower arsenic extractions (KST methods) of washed soils. Among several washing trials, alternative sequential washing using 0.2M HCl followed by 1M HCl (second step) and 1M NaOH solution (third step) showed reliable and lower values of arsenic extractions (KST methods) of washed soils. This washing method can satisfy the arsenic regulation of washed soil for reuse or safe disposal application. The kinetic data of washing tests revealed that dissolved arsenic was easily readsorbed into remaining soils at a low pH. This result might have occurred due to dominant species of positively charged crystalline iron oxides characterized through the sequential extraction procedure. However, alkaline extraction using NaOH was effective in removing arsenic readsorbed onto the surface of crystalline minerals. This is because of the ligand displacement reaction of hydroxyl ions with arsenic species and high pH conditions that can prevent readsorption of arsenic.  相似文献   
632.
Ho L  Hoefel D  Bock F  Saint CP  Newcombe G 《Chemosphere》2007,66(11):2210-2218
Taste and odour (T&O) causing compounds, in particular, 2-methylisoborneol (MIB) and geosmin, are a problem for water authorities as they are recalcitrant to conventional water treatment. In this study, biological sand filtration was shown to be an effective process for the complete removal of MIB and geosmin, with removal shown to be predominantly through biodegradation. In addition, MIB and geosmin were also effectively degraded in batch bioreactor experiments using biofilm sourced from one of the sand filters as the microbial inoculum. The biodegradation of MIB and geosmin was determined to be a pseudo-first-order reaction with rate constants ranging between 0.10 and 0.58 d−1 in the bioreactor experiments. Rate constants were shown to be dependent upon the initial concentration of the microbial inoculum but not the initial concentration of MIB and geosmin when target concentrations of 200 and 50 ng l−1 were used. Furthermore, rate constants were shown to increase upon re-exposure of the biofilm to both T&O compounds. Enrichment cultures with subsequent community profile analysis using 16S rRNA-directed PCR-DGGE identified four bacteria most likely involved in the biodegradation of geosmin within the sand filters and bioreactors. These included a Pseudomonas sp., Alphaproteobacterium, Sphingomonas sp. and an Acidobacteriaceae member.  相似文献   
633.
634.
635.
Carbonization is a kind of pyrolysis process to produce char from organic materials under an inert atmosphere. In this work, chars derived from various solid wastes were characterized from the standpoint of fuel recovery and pretreatment of waste before landfilling. Sixteen kinds of municipal and industrial solid wastes such as residential combustible wastes, non-combustible wastes, bulky wastes, construction and demolition wastes, auto shredder residue, and sludges were carbonized at 500 degrees C for 1h under nitrogen atmosphere. In order to evaluate the quality of char as fuel, proximate analysis and heating value were examined. The composition of raw waste had a significant influence on the quality of produced char. The higher the ratio of woody biomass in waste, the higher heating value of char produced. Moreover, an equation to estimate heating value of char was developed by using the weight fraction of fixed carbon and volatile matter in char. De-ashing and chlorine removal were performed to improve the quality of char. The pulverization and sieving method seems to be effective for separation of incombustibles such as metal rather than ash. Most char met a 0.5 wt% chlorine criterion for utilization as fuel in a shaft blast furnace after it was subjected to repeated water-washing. Carbonization could remove a considerable amount of organic matter from raw waste. In addition, the leaching of heavy metals such as chrome, cadmium, and lead appears to be significantly suppressed by carbonization regardless of the type of raw waste. From these results, carbonization could be considered as a pretreatment method for waste before landfilling, as well as for fuel recovery.  相似文献   
636.
The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes the first of two modelling exercises, which was based on Chernobyl fallout data in the town of Pripyat, Ukraine. Modelling endpoints for the exercise included radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces and radionuclides, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a “no action” situation (with no remedial measures) and for selected countermeasures. The exercise provided a valuable opportunity to compare modelling approaches and parameter values, as well as to compare the predicted effectiveness of various countermeasures with respect to short-term and long-term reduction of predicted doses to people.  相似文献   
637.
Speciated samples of PM2.5 were collected at the Big Bend site from July of 2003 to June 2006 and the McDonald Observatory site from July of 2003 to August of 2005 in southwestern Texas, respectively, by the US Environmental Protection Agency. A total of 175 samples for the Big Bend site and 105 samples for the McDonald Observatory site with 52 species were measured; however, 30 and 32 species from the Big Bend and McDonald Observatory sites, respectively, were excluded because of too much below-detection-limit data. Due to the laboratory change about November 1 of 2004 and possible analytical artifacts, phosphorous was excluded as well. Among the species excluded, 31 species are common to both sites. The two data sets were analyzed by positive matrix factorization to infer the sources of PM observed at the two sites. The analysis resolved five source-related factors for Big Bend and four for McDonald Observatory. Sulfate-rich secondary aerosol, coal burning, motor vehicle/road dust, and a mixed factor were identified as common sources to both sites. The other factor identified for Big Bend is related to soil. Sulfate mainly exists as ammonium salts. The sulfate-rich secondary aerosols account for about 62% and 66% of the PM2.5 mass concentration at the two sites, respectively. The highest concentration of Si associated with Ca, Fe, \textSO42 - {\text{SO}}_4^{2 - } , and organic carbon at the two sites was possibly attributed to the coal-fired power plants in the region. Basically, the factor of sulfate and coal burning at the two sites showed similar chemical composition profiles and seasonal variation that reflect the regional characteristics of these sources. The regional factors of sulfate, coal burning, and soil showed predominantly low-frequency variations; however, the area-related and/or local factors showed both high and low frequency variations. The motor vehicle/road dust and the mixed factors were likely to be area-related and/or local source.  相似文献   
638.
Over the western North Pacific, a large amount of land aerosols from Asian-Pacific countries is transported by the prevailing westerlies. This transport makes the radiative characteristics of these aerosols diverse, particularly when one compares those characteristics over the coastal sea with those over the open sea. In this paper we discuss a method that uses satellite data to obtain the single-scattering albedo (ω) and asymmetry factor (g) of atmospheric aerosols for two large-scale subdivisions—the coastal sea (within 250 km from the coast) and the open sea (the remaining area)—over the western North Pacific (110°E–180°, 20°N–50°N). Our estimation method uses satellite measurements, obtained over a six-year period (2000–2005), of aerosol optical depth (AOD) and shortwave fluxes at both the surface and the top of the atmosphere (TOA); the measurements are obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES). For the two subdivisions, the estimated annual means of (ω,g) at 630 nm are significantly different: (0.94, 0.65) over the coastal sea and (0.97, 0.70) over the open sea. From a quantitative viewpoint, this result indicates that in comparison with aerosols over the open sea, those over the coastal sea show greater absorption and lesser forward scattering of solar radiation. The estimated optical properties are responsible for the aerosol surface cooling observed by MODIS and CERES, which is approximately 138 and 108 W m−2 per AOD over the coastal sea and open sea, respectively.  相似文献   
639.
This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. Elemental mercury and mercuric chloride were tested with activated carbon and bauxite. The experimental results indicated that mercury desoption from sorbents was strongly affected by the desorption temperature and the mercury–sorbent pair. Elemental mercury was observed to desorb faster than mercuric chloride and activated carbon appeared to have higher desorption limits than bauxite at low temperatures. A kinetic model considering the mechanisms of surface equilibrium, pore diffusion and external mass transfer was proposed to simulate the observed desorption profiles. The model was found to describe reasonably well the experimental results.  相似文献   
640.
Putrajaya Wetlands in Malaysia, a 200ha constructed wetland system consisting of 24 cells, was created in 1997-1998 to treat surface runoff caused by development and agricultural activities from an upstream catchment before entering Putrajaya Lake (400ha). It was designed for stormwater treatment, flood control and amenity use. The water quality improvement performance of a section of the wetland cells is described. The nutrient removal performance was 82.11% for total nitrogen, 70.73% for nitrate-nitrogen and 84.32% for phosphate, respectively, along six wetland cells from Upper North UN6 to UN1 from April to December 2004. Nutrient removal in pilot scale tank systems, simulating a constructed wetland and planted with examples of common species at Putrajaya, the Common Reed Phragmites karka and Tube Sedge Lepironia articulata, and the capacity of these species to retain nutrients in above and below-ground plant biomass and substrate is reported. The uptake of nutrients by the Common Reed and Tube Sedge from the pilot tank system was 42.1% TKN; 28.9% P and 17.4% TKN; 26.1% P, respectively. The nutrient uptake efficiency of the Common Reed was higher in above-ground than in below-ground tissue. The results have implications for plant species selection in the design of constructed wetlands in Malaysia and for optimizing the performance of these systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号