首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   2篇
  国内免费   4篇
安全科学   3篇
废物处理   6篇
环保管理   11篇
综合类   20篇
基础理论   12篇
污染及防治   61篇
评价与监测   18篇
社会与环境   4篇
灾害及防治   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   14篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   6篇
  2008年   1篇
  2007年   10篇
  2006年   10篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   7篇
  1999年   2篇
  1998年   2篇
  1997年   9篇
  1996年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1987年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有137条查询结果,搜索用时 125 毫秒
101.
Estimating the change of porosity in the saturated zone during air sparging   总被引:1,自引:0,他引:1  
Introduction A ir sparging rem oves volatile organic conta- m inants from a saturated zone by com bining volatilization and aerobic biodegradation. A ir is injected below the w ater table through a slotted screen in a sparging w ell, and then rises to the…  相似文献   
102.
Solidification of low-level-radioactive (LLW) resin was optimized using Taguchi analytical methodology. The ingredients in LLW mortar which caused the solidification of cement were evaluated through consecutive measurements of the effects of various concentrations of ingredients. Samples selected according to Taguchi's method were separated into 18 different categories and measured at the 7th, 21st, and 28th day after fabrication on developing effects. Evaluations of the various samples focused on whether the compressive and bending strength fulfilled the special criteria of the Taiwan Power Company (TPC). Similar results indicated that both furnace slag and fly ash were the dominant material resulting from the solidification of LLW mortar. The superior combination was obtained as furnace slag 24 wt.%, fly ash 24 wt.%, and cement 8 wt.% to mix 24 wt.% of resin with 20 wt.% of water, to fulfill the contemporary requirements of TPC.  相似文献   
103.
ABSTRACT

Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5.

The mean concentration of ambient PM2.5 was 42.6953.68 μj.g/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4 2- (12.8-15.1%), NO3 - (8.110.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4 2- and NO3 -), and outdoor burning of agriculture wastes (13-17%).  相似文献   
104.
ABSTRACT

With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300–14,700 mg/m3 and 240–400 ° C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained.

Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results.

In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst.  相似文献   
105.

Purpose  

This study assessed the potential exposure risks for workers in the workplace exposed to airborne titanium dioxide nanoparticles (TiO2-NPs) and carbon black nanoparticles (CB-NPs). The risk management control strategies were also developed for the NP engineering workplace.  相似文献   
106.
UV/ozone degradation of gaseous hexamethyldisilazane (HMDS)   总被引:1,自引:0,他引:1  
Chou MS  Chang KL 《Chemosphere》2007,69(5):697-704
As a carcinogen, hexamethyldisilazane (HMDS) is extensively adopted in life science microscopy, materials science and nanotechnology. However, no appropriate technology has been devised for treating HMDS in gas streams. This investigation evaluated the feasibility and effectiveness of the UV (185+254nm) and UV (254nm)/O(3) processes for degradation of gaseous HMDS. Tests were performed in two batch reactors with initial HMDS concentrations of 32-41mgm(-3) under various initial ozone dosages (O(3) (mg)/HMDS (mg)=1-5), atmospheres (N(2), O(2), and air), temperatures (28, 46, 65 and 80 degrees C), relative humilities (20%, 50%, 65%, 99%) and volumetric UV power inputs (0.87, 1.74, 4.07 and 8.16Wl(-1)) to assess their effects on the HMDS degradation rate. Results indicate that for all conditions, the decomposition rates for the UV (185+254nm) irradiation exceeded those for the UV (254nm)/O(3) process. UV (185+254nm) decompositions of HMDS displayed an apparent first-order kinetics. A process with irradiation of UV (185+254nm) to HMDS in air saturated with water at temperatures of 46-80 degrees C favors the HMDS degradation. With the condition as above and a P/V of around 8Wl(-1), k was approximately 0.20s(-1) and a reaction time of just 12s was required to degrade over 90% of the initial HMDS. The main mechanisms for the HMDS in wet air streams irradiated with UV (185+254nm) were found to be caused by OH free-radical oxidation produced from photolysis of water or O((1)D) produced from photolysis of oxygen. The economic evaluation factors of UV (185+254nm) and UV (254nm)/O(3) processes at different UV power inputs were also estimated.  相似文献   
107.
108.
Valuable metal materials can be recovered from spent nickel–metal hydride (NiMH) batteries. However, little attention has been paid to the metal compositions of individual components of NiMH batteries, although this is important for the selection of the appropriate recycling process. In this study, NiMH batteries were manually disassembled to identify the components and to characterize the metals in each of these. A preliminary economic analysis was also conducted to evaluate the recovery of valuable metals from spent NiMH batteries using thermal melting versus simple mechanical separation. The results of this study show that metallic components account for more than 60% of battery weight. The contents of Ni, Fe, Co, and rare earth elements (REEs) (i.e., valuable metals of interest for recovery) in a single battery were 17.9%, 15.4%, 4.41%, and 17.3%, respectively. Most of the Fe was in the battery components of the steel cathode collector, cathode cap, and anode metal grid, while Ni (>90%) and Co (>90%) were mainly in the electrode active materials (anode and cathode metal powders). About 1.88 g of REEs (Ce, La, and Y) could be obtained from one spent NiMH battery. The estimated profits from recovering valuable metals from spent NiMH batteries by using thermal melting and mechanical processes are 2,329 and 2,531 USD/ton, respectively, when including a subsidy of 1,710 USD/ton. The findings of this study are very useful for further research related to technical and economic evaluations of the recovery of valuable metals from spent NiMH batteries. Implications: The spent nickel–metal hydride (NiMH) batteries were manually disassembled and their components were identified. The metals account for more than 60% of battery weight, when Ni, Fe, Co, and rare earth elements (REEs) were 17.9%, 15.4%, 4.41%, and 17.3%, respectively, in a single battery. The estimated profits of recovering valuable metals from NiMH batteries by using thermal melting and mechanical processing are 2,329 and 2,531 USD/ton, respectively, when including a subsidy of 1,710 USD/ton. These findings are very useful to develop or select the recovery methods of valuable metals from spent NiMH batteries.  相似文献   
109.
Su CY  Chou FH  Tsai KY  Lin WK 《Disasters》2011,35(3):587-605
This study presents information on the design and creation of a standard operation procedure (SOP) for psychiatric service after an earthquake. The strategies employed focused on the detection of survivors who developed persistent psychiatric illness, particularly post-traumatic stress and major depressive disorders. In addition, the study attempted to detect the risk factors for psychiatric illness. A Disaster-Related Psychological Screening Test (DRPST) was designed by five psychiatrists and two public health professionals for rapidly and simply interviewing 4,223 respondents within six months of the September 1999 Chi-Chi earthquake. A SOP was established through a systemic literature review, action research, and two years of data collection. Despite the limited time and resources inherent to a disaster situation, it is necessary to develop an SOP for psychiatric service after an earthquake in order to assist the high number of survivors suffering from subsequent psychiatric impairment.  相似文献   
110.
Groundwater monitoring at Department of Energy's (DOE's) Hanford Site is a large, expensive undertaking serving multiple purposes, including compliance with regulations and DOE orders, remediation efforts under CERCLA, and sitewide risk evaluations. Like most large Federal facilities, the monitoring program currently in place has evolved and grown overtime as new requirements were established and groups were assigned to address them. DOE and its regulators simultaneously awakened to the fact that there was a need to reevaluate the monitoring activities at Hanford, to better integrate the program, to avoid duplicative sampling, to improve everyone's understanding of the performance of the network, and to evaluate whether adequate data could be collected for lower cost. This paper describes the approch that was developed to guide the rethinking effort with direct and extensive involvement of DOE, EPA, Washington Department of Ecology, Indian Tribes, and DOE Contractors, and how this approach was applied to a large portion of the site. Both the human element of the process (cultural change), as well as some of the technical details associated with the effort, including a flexible application of EPA's data quality objectives process, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号