Thirteen paddy soil profiles and river sediments which are sources of irrigation water were collected around the Taihu Lake, and the trace elements were estimated. The content of La and Ce in paddy soil and sediment were 39.3 and 68.6 mg/kg soil and 36.9 and 65.1 mg/kg soil, being within the range of background values. The values for Pb, Cu, Ni, Cr, Co, Mn, Zn, Se in paddy soil were 23.3, 27.8, 25.5, 63.5, 10.2, 386, 68.7 and 0.25 mg/kg soil respectively, all below the national permission level. There was a decline of Zn in paddy soil. Some of the river sediments were seriously polluted. The river in Yangjin site was most contaminated with 5.47 g Cu/kg and 7.4 g Zn/kg. The high concentration of Pb and Ni also was observed in this sediment. River in Weitang, Huashi, Xinzhuang and Meiyan were contaminated with Pb, Cu and Ni to some extent. Zn, Cu and Pb were the main pollutants in present experiment sites. The fast development of village/township industries have caused severe environmental pollution in the Taihu Lake region, especially irrigation river sediments. Se content in plant and seed was 0.04 and 0.03 mg/kg respectively, showed Se-deficiency in paddy soil in the Taihu Lake region. 相似文献
Chromated copper arsenate (CCA)-treated wood has been widely used in the Southeastern United States to protect wood products from microbial and fungal decay. The aims of this study were to (1). determine the distribution of arsenic (As), chromium (Cr), and copper (Cu), in soils surrounding CCA-treated wood structures such as decks, fences and poles; and (2). evaluate the impacts of these structures on As, Cr and Cu loading of the soils. Profile and lateral soil samples were collected under CCA-treated decks and adjacent to poles and fences. The results showed elevation of As, Cr and Cu concentrations close to and under the structures, with mean As concentrations as high as 23 mg x kg(-1) close to utility poles compared with less than 3 mg x kg (-1) at distances of about 1.5 m away. Concentrations of As, Cr, and Cu decreased with depth in areas close to CCA-treated poles. However, these results were only apparent in relatively new structures. A combination of weathering and leaching with time may have reduced the impact in older poles. Increased concentrations of As, Cu and Cr were also observed close to CCA-treated decks and fences, with age showing a similar impact. These results are helpful for CCA-treated wood product users to determine the safe use of these structures. 相似文献
Environmental Science and Pollution Research - The current study investigated the influence of organic amendments on cadmium (Cd) uptake and its effects on biochemical attributes of young and old... 相似文献
The uptake, translocation, and human bioaccessibility of metals originating from atmospheric fine particulate matters (PM) after foliar exposure is not well understood. Lettuce (Lactuca sativa L.) plants were exposed to micronic PbO, CuO, and CdO particulate matters (PMs) by the foliar pathway and mature plants (6 weeks old) were analyzed in terms of: (1) metal accumulation and localization on plant leaf surface, and metal translocation factor (TF) and global enrichment factor (GEF) in the plants; (2) shoot growth, plant dry weight (DW), net photosynthesis (Pn), stomatal conductance (Gs), and fatty acid ratio; (3) metal bioaccessibility in the plants and soil; and (4) the hazard quotient (HQ) associated with consumption of contaminated plants. Substantial levels of metals were observed in the directly exposed edible leaves and newly formed leaves of lettuce, highlighting both the possible metal transfers throughout the plant and the potential for human exposure after plant ingestion. No significant changes were observed in plant biomass after exposure to PbO, CuO, and CdO-PMs. The Gs and fatty acid ratio were increased in leaves after metal exposure. A dilution effect after foliar uptake was suggested which could alleviate metal phytotoxicity to some degree. However, plant shoot growth and Pn were inhibited when the plants are exposed to PbO, and necrosis enriched with Cd was observed on the leaf surface. Gastric bioaccessibility of plant leaves is ranked: Cd?>?Cu?>?Pb. Our results highlight a serious health risk of PbO, CuO, and CdO-PMs associated with consumption of vegetables exposed to these metals, even in newly formed leaves in the case of PbO and CdO exposure. Finally, the study highlights the fate and toxicity of metal rich-PMs, especially in the highly populated urban areas which are increasingly cultivated to promote local food.