首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
安全科学   1篇
污染及防治   10篇
评价与监测   3篇
社会与环境   2篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有16条查询结果,搜索用时 125 毫秒
11.
Systematic investigations of (137)Cs and (134)Cs activity concentrations in potatoes (Solanum tuberosum) for the post-Chernobyl period (1986-2005) in the Republic of Croatia are summarized. The correlation between (137)Cs activity concentrations in fallout and potatoes, has been found to be very good, the correlation coefficient being r = 0.88 with P(t) < 0.001 for 18 degrees of freedom. As the radiocaesium levels in potatoes decreased exponentially, the mean residence time of (137)Cs in potatoes was estimated by fitting the measured activity concentrations to the exponential curve. The mean residence time was found to be 6.8 +/- 1.1 years, the standard deviation being estimated by the Monte Carlo simulations. The initial observed (134)Cs:(137)Cs activity ratio in potatoes has been found to be quite variable, but slightly lesser than the theoretically predicted value of 0.5, calculated by applying the known inventory of these radionuclides in the Chernobyl reactor to the equation for the differential radioactive decay. This can be explained by presence of the pre-Chernobyl (137)Cs in soil that originated from nuclear fallout. The annual effective doses received by (134)Cs and (137)Cs intake due to consumption of potatoes estimated for an adult member of the Croatian population were found to be very small, as the per caput Dose for the entire 1986-2005 period was calculated to be about 2.9 microSv, (134)Cs accounting approximately for 1/3 of the entire dose. Therefore, after the Chernobyl accident consumption of potatoes was not the critical pathway for human intake of radiocaesium from the environment in Croatia.  相似文献   
12.
The possibility of direct measurement of trace elements in hepatic cytosol of European chub (Squalius cephalus) by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS) after cytosol dilution with Milli-Q water and subsequent acidification was investigated. Due to low detection limits of this procedure, determination of 13 elements (As, Cd, Co, Cu, Fe, Mn, Mo, Pb, Sb, Sn, Sr, V and Zn) was possible in the chub hepatic cytosol, exhibiting excellent measurement repeatability in duplicates. Some of these elements were also measured by HR ICP-MS in acid digested cytosols (Cd, Co, Cu, Fe, Mn, Mo, Sr, V and Zn). Good agreement of the results obtained after sample dilution and sample digestion indicated that complex organic matrix of hepatic cytosol did not affect measurement reliability. Cytosolic concentrations of 13 trace elements in the chub liver were quantified in the following order: Fe, Zn>Cu>Mn>Mo>Sr, V, Cd>Co>As, Pb>Sn>Sb. Unlike Cd, Cu, Fe, Mn and Zn for which the cytosolic concentrations were previously reported after measurement by AAS, cytosolic concentrations of eight additional trace elements characteristic for the liver of chubs inhabiting the low contaminated river water were reported here for the first time (in nanogrammes per gramme)—Mo, 136.8–183.6; Sr, 32.7–63.0; V, 17.5–69.0; Co, 24.3–30.7; As, 9.9–29.5; Pb, 5.8–35.6; Sn, 5.5–12.4; and Sb, 0.9–2.6. The simultaneous measurement of large number of trace elements in the cytosolic fractions of fish tissues, which comprise potentially metal-sensitive sub-cellular pools, could be beneficial as a screening tool in the monitoring of natural waters, because it would enable timely recognition of increased fish exposure to metals.  相似文献   
13.
The study on medium size river Sutla in Croatia indicated considerable water contamination at specific sites during the baseflow period, probably associated to low flow-rate (0.73-68.8 m3 s(-1)), and consequently low dilution capacity of this river. Various aspects of contamination were observed: increased conductivity to 1,000 microS cm(-1), decreased dissolved oxygen level to 50%, 4-5 degrees C increased water temperature, increased concentrations of several dissolved trace elements (e.g., maximal values of Li: 45.4 microg l(-1); Rb: 10.4 microg l(-1); Mo: 20.1 microg l(-1); Cd: 0.31 microg l(-1); Sn: 30.2 microg l(-1); Sb: 11.8 microg l(-1); Pb: 1.18 microg l(-1); Ti: 1.03 microg l(-1); Mn: 261.1 microg l(-1); and Fe: 80.5 microg l(-1)) and macro elements (e.g., maximal values of Na: 107.5 mg l(-1); and K: 17.3 mg l(-1)), as well as moderate or even critical fecal (E. coli: 4,888 MPN/100 ml; total coliforms: 45,307 MPN/100 ml; enterococci: 1,303 MPN/100 ml) and organic pollution (heterotrophic bacteria: 94,000 cfu/ml). Although metal concentrations still have not exceeded the limits considered as hazardous for aquatic life or eventually for human health, the observed prominent increases of both metal concentrations and bacterial counts in the river water should be considered as a warning and incentive to protect the small and medium size rivers from the future deterioration, as recommended by EU Water Framework Directive.  相似文献   
14.
Aniline partially degraded in sterile soil to azobenzene, azoxybenzene, phenazine, form=anilide, and acetanilide. Nitrobenzene, p-benzoquinone, and unidentified species were possible products; substantial bound residues may also have formed. Soil-catalyzed conversion of aniline or [d5]aniline seems evidenced by 6-24X more product recovery in sterile soil than in sterile water alone, a process inhibited by Na2S2O4. Freundlich adsorption constants showed: azobenzene > azoxybenzene > phenazine > aniline.  相似文献   
15.

Purpose

To examine if chronic exposure of feral fish to elevated Pb concentrations in the river water (up to 1???g?L?1), which are still lower than European recommendations for dissolved Pb in surface waters (7.2???g?L?1; EPCEU (Official J L 348:84, 2008)), would result in Pb accumulation in selected fish tissues.

Methods

Lead concentrations were determined by use of HR ICP-MS in the gill and hepatic soluble fractions of European chub (Squalius cephalus) caught in the Sutla River (Croatia?CSlovenia).

Results

At the site with increased dissolved Pb in the river water, soluble gill Pb levels (17.3???g?L?1) were approximately 20 times higher compared to uncontaminated sites (0.85???g?L?1), whereas the ratio between contaminated (18.1???g?L?1) and uncontaminated sites (1.17???g?L?1) was lower for liver (15.5). Physiological variability of basal Pb concentrations in soluble gill and hepatic fractions associated to fish size, condition, sex, or age was not observed, excluding the possibility that Pb increase in chub tissues at contaminated site could be the consequence of studied biotic parameters. However, in both tissues of Pb-exposed specimens, females accumulated somewhat more Pb than males, making female chubs potentially more susceptible to possible toxic effects.

Conclusions

The fact that Pb increase in gill and hepatic soluble fractions of the European chub was not caused by biotic factors and was spatially restricted to one site with increased dissolved Pb concentration in the river water points to the applicability of this parameter as early indicator of Pb exposure in monitoring of natural waters.  相似文献   
16.
Association of selected essential (Co, Cu, Fe, Mn, Mo, Se, and Zn) and nonessential (Cd, Pb) trace elements with cytosolic proteins of different molecular masses was described for the liver of European chub (Squalius cephalus) from weakly contaminated Sutla River in Croatia. The principal aim was to establish basic trace element distributions among protein fractions characteristic for the fish living in the conditions of low metal exposure in the water. The fractionation of chub hepatic cytosols was carried out by size exclusion high performance liquid chromatography (SE-HPLC; Superdex? 200 10/300 GL column), and measurements were performed by high resolution inductively coupled plasma mass spectrometry (HR ICP-MS). Elution profiles of essential elements were mostly characterized by broad peaks covering wide range of molecular masses, as a sign of incorporation of essential elements in various proteins within hepatic cytosol. Exceptions were Cu and Fe, with elution profiles characterized by sharp, narrow peaks indicating their probable association with specific proteins, metallothionein (MT), and ferritin, respectively. The main feature of the elution profile of nonessential metal Cd was also single sharp, narrow peak, coinciding with MT elution time, and indicating almost complete Cd detoxification by MT under the conditions of weak metal exposure in the water (dissolved Cd concentration ≤0.3 μg L?1). Contrary, nonessential metal Pb was observed to bind to wide spectrum of proteins, mostly of medium molecular masses (30–100 kDa), after exposure to dissolved Pb concentration of ~1 μg L?1. The obtained information within this study presents the starting point for identification and characterization of specific metal/metalloid-binding proteins in chub hepatic cytosol, which could be further used as markers of metal/metalloid exposure or effect on fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号