首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   14篇
  国内免费   24篇
安全科学   4篇
环保管理   1篇
综合类   47篇
基础理论   9篇
污染及防治   14篇
评价与监测   6篇
社会与环境   1篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   6篇
  2019年   8篇
  2018年   18篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
31.
生物多样性保护的环境伦理规则初探   总被引:3,自引:0,他引:3  
生物多样性资源具有多种价值,而人类的活动正导致地球上的生物多样性资源以前所未有的速度减少。因此,生物多样性保护已成为全球环境保护的一个热点。本文在介绍生物多样概念的基础上,从环境伦理学的角度出发,提出生物多样性保护的伦理规则为:生物资源享用的平等原则,生物多样性资源保护的平等原则,生物多样性保护费用分摊的平等原则。  相似文献   
32.
为研究天津市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,于2015年4月采集天津市道路扬尘样品,利用再悬浮采样器将采集的样品悬浮到滤膜上,用离子色谱仪分析其水溶性无机离子组分,利用相关分析和比值分析及主成分法对其污染特征和来源进行探讨.结果表明,天津市8种水溶性无机离子占道路扬尘PM_(2.5)的6.13%±2.32%;不同道路类型道路扬尘PM_(2.5)中水溶性无机离子总量差异较大.相关性分析表明Na~+、K~+、Mg~(2+)和Ca~(2+)这4种离子同源性较高.NO_3~-/SO_4~(2-)比值显示固定源对天津市春季道路扬尘PM_(2.5)的影响更为显著.通过主成分分析法可知,天津市春季道路扬尘PM_(2.5)主要来源于燃煤源、移动源、生物质燃烧源和建筑施工扬尘.  相似文献   
33.
中国绿色建材发展研究   总被引:7,自引:0,他引:7  
绿色建材是一种不破坏环境,不能保护环境,节约能源和资源,满足社会发展的新型建筑材料。本文扼要介绍了我国绿色建材的发展现状,着重从三个方面分析了绿色建材评价标准,加强和完善绿色建材认证制度等建议以促进我国绿色建材的发展,从而保证环境、社会、经济可持续发展。  相似文献   
34.
道路交通扬尘采样方法研究进展   总被引:2,自引:0,他引:2  
道路交通扬尘是我国北方城市环境空气中PM10和PM2.5污染的重要来源之一,要改善环境空气质量,进一步降低颗粒物浓度,必须采取有效措施控制道路交通扬尘,而控制扬尘的第一步是确定采样方法。目前我国还没有标准化的道路交通扬尘采样方法,本文归纳了当前国内外应用的主要方法,重点介绍了降尘法、积尘负荷法和快速检测法三种采样方法,并对三种方法进行了比较,分析了各自具有的优势和存在的问题。最后指出,快速检测法是最有潜力的采样方法,未来还需进一步的研究,争取早日制订出适合我国国情的标准化的道路交通扬尘采样方法。  相似文献   
35.
为研究唐山市典型道路积尘负荷分布特征,于2019年1、4、7月基于样方真空吸尘法采集样品,通过筛分称重获得道路积尘负荷,并探讨其时空分布特征.结果表明:(1)不同类型道路积尘负荷排序为支路((0.70±0.85)g/m2)>环线((0.50±0.47)g/m2)>次干道((0.30±0.25)g/m2)>主干道((0....  相似文献   
36.
在特定时间特定地点利用溶蚀器PM2.5采样系统进行PM2.5采样前,应首先确定溶蚀器涂层溶液最适浓度.为确定在天津市冬季利用蜂窝状溶蚀器PM2.5采样系统采样的最优化条件,于2014年1月1日~2月24日,在南开大学理化楼楼顶进行蜂窝状溶蚀器涂层溶液最适浓度的条件实验.结果表明:在天津地区冬季, 蜂窝状溶蚀器的碳酸钠涂层溶液最适浓度为4%,柠檬酸涂层溶液最适浓度为5%; 环境空气中HCl气体对PM2.5中Cl-的质量浓度测定影响不大,而HNO3、SO2、NH3等酸/碱性气体对PM2.5中相对应离子的质量浓度测定影响较大.  相似文献   
37.
抚顺市PM10中元素分布特征及来源分析   总被引:4,自引:2,他引:2  
为了确定抚顺市PM10中元素的浓度特征及其来源,于2006—2007年的采暖季、风沙季和非采暖季在抚顺市的6个采样点采集PM10样品,并用等离子体原子发射光谱法(ICP-AES)测定样品中Ti、Al、Mn、Mg、Ca、Na、K、Cu、Zn、As、Pb、Cr、Ni、Co、Cd、Fe、V等17种元素的含量。结果表明,Al、Mg、Ca、Na、K、Mn、Fe等地壳元素在17种元素中占有较大比重,全年平均达到97.0%。富集因子分析结果表明,Cu、Zn、Pb、Cr、Co、Cd等元素在各季和各采样点明显受到人为活动影响,是典型的污染元素。主因子分析结果显示,土壤风沙尘、建筑尘、燃煤尘、道路扬尘、机动车尾气排放、金属冶炼、锰、铜、钛工业源是抚顺市PM10中元素的主要来源。  相似文献   
38.
为研究西宁市道路扬尘PM2.5和PM10中碳组分的特征及其来源,于2019年5月使用样方法采集西宁市78条铺装道路,通过NK-ZXF再悬浮仪器将样品悬浮到滤膜上,并利用热光碳分析仪测定有机碳(OC)和元素碳(EC)组分。结果表明:PM2.5ω(TC)为8.49%(环线)~10.38%(支路),ω(OC)为7.68%(环线)~9.36%(支路),ω(EC)为0.74%(国道)~1.02%(支路);PM10ω(TC)为8.38%(环线)~10.78%(支路),ω(OC)为7.30%(环线)~9.76%(支路),ω(EC)为0.59%(高速)~1.09%(环线)。各类型道路中ω(OC) 均明显大于ω(EC),ω(EC) 在不同道路类型中差异不大。OC在PM10中的质量分数均高于在PM2.5中的值,表明OC更容易富集到粒径大的颗粒物上。采用最小相关系数法(MRS)估算道路扬尘PM2.5和PM10中SOC含量,得出SOC分别占OC总量的81.91%和76.25%。以上结果说明道路扬尘存在明显的二次污染。因子分析和OC/EC比值分析表明西宁市春季道路扬尘PM2.5和PM10主要来源于燃煤、生物质燃烧和机动车尾气排放。本研究可为西宁市道路扬尘污染防治工作及制定环境管理对策提供参考。  相似文献   
39.
为探究不同采样方法对积尘负荷结果的影响,使用样方采样法和以克论净车采样法采集2018年夏季样品的数据,对北京市3个行政区的11条道路扬尘样品进行现场监测,计算不同道路类型及不同车道的积尘负荷,并对积尘负荷的变化规律进行分析。结果表明:基于样方采样法和以克论净车采样法的北京市夏季不同道路类型积尘负荷从大到小顺序依次为次干道(0.46 g·m−2、0.99 g·m−2) >支路(0.31 g·m−2、0.88 g·m−2)>主干道(0.24 g·m−2、0.78 g·m−2);2种采样方法所得积尘负荷差异的检验结果具有显著性(P=0.00<0.05)且存在线性关系;北京市夏季道路积尘负荷(0.34 g·m−2)稍高于天津市(0.24 g·m−2),低于石家庄市(1.06 g·m−2)、乌鲁木齐市(0.96 g·m−2)和西安市(0.70 g·m−2);基于样方采样法和以克论净车采样法采集的不同城区道路积尘负荷水平排序为大兴区(0.39 g·m−2、1.83 g·m−2)>朝阳区(0.38 g·m−2、1.00 g·m−2)>东城区(0.26 g·m−2、0.92 g·m−2),朝阳区、东城区和大兴区积尘负荷差异的检验结果均不具有显著性(P>0.05);基于样方采样法的机动车慢车道与机动车快车道积尘负荷分别为0.04~1.30 g·m−2和0.02~1.08 g·m−2;慢车道积尘负荷略高于快车道,但二者差异的检验结果不具有显著性(P=0.51>0. 05)。本研究成果可为遴选道路扬尘采样方法、构建北京市道路扬尘排放清单和制定管控措施提供参考。  相似文献   
40.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号