首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
安全科学   18篇
废物处理   7篇
环保管理   9篇
综合类   17篇
基础理论   6篇
污染及防治   14篇
评价与监测   4篇
社会与环境   9篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   9篇
  2011年   3篇
  2010年   1篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   8篇
  2002年   6篇
  1996年   2篇
排序方式: 共有84条查询结果,搜索用时 171 毫秒
31.
Experimental oil spill studies were conducted to quantify the effectiveness of selected in-situ shoreline treatment options to accelerate natural oil removal processes on mixed-sediment (sand and pebble) shorelines. At each of three distinct shoreline sites, treatment test plots and control plots were established within a 40-, 80- and 143-m continuous stretch of oiled shoreline. A total of 5500 l of oil was deposited along a 3-m wide swath in the upper intertidal zone at each site. Approximately one week after oiling, a different treatment technique was applied to each plot. The treatment techniques were: sediment relocation (surf washing), mixing (tilling), bioremediation (fertilizer application), and bioremediation combined with mixing. One plot at each site was monitored for natural attenuation. The quantity of oil removed from the plots was measured six times up to 60 days post-treatment and then again one year later. Changes in the physical character of the beach, oil penetration, movement of oil to the subtidal environment, toxicity, and biodegradation were monitored over the 400-day period.The results verified quantitatively that relocation of oiled sediments significantly accelerated the rate of oil removal from the shoreline by more than one year. Microscopic observations and image analyses confirmed that the oil-mineral aggregate formation process was active and was increased by sediment relocation. Oil biodegradation occurred in this arctic environment, both in the oiled sediments and on the fine mineral particles removed from the sediment by natural physical processes. The biodegradation of oil in sediment was significantly stimulated by simple bioremediation protocols. Mixing (by tilling) did not clearly stimulate oil loss and natural recovery in the context of this experimental design. None of the treatment techniques elevated toxicity in the nearshore environment to unacceptable levels, nor did they result in consequential alongshore or nearshore oiling.  相似文献   
32.
33.
This work is aimed at quantifying foliar transfer of cesium, strontium, barium and tellurium under the influence of rainfall characteristics (intensity, frequency and time elapsed between contamination and first rainfall). Grassland boxes were contaminated by dry deposition of multi-element aerosols of (137)Cs, (85)Sr, (133)Ba and (123m)Te. They were grown in a greenhouse under controlled conditions. The treatments consisted of mowing and applying rainfalls (8 and 30 mmh(-1)) at different times after the contamination. At a leaf area index of 5.9+/-1.9, interception of the aerosols was similar for the 4 radionuclides (83.8+/-5.9%). Dew produced significant radionuclide accumulation in the base of the vegetation and transfer to the soil. For moderate intensity, an early (2 days after contamination) first rainfall was as efficient, in terms of leaf wash-off, as a longer rainfall occurring later (6 days after contamination). For early rainfalls, eliminated activities were comparable because the influence of rain intensity was compensated by rain duration. However, for late rainfalls, wash-off efficiency increased with rainfall intensity. Total transfer factors (TTF) were determined on whole grass immediately after 4 rainfalls and at harvest. After 4 medium intensity rainfalls, rain frequency did not influence total transfer factors (TTF) of strontium, barium and tellurium (about 0.2, 0.3 and 0.35 Bq kg(fresh weight)(-1) by Bq m(-2), respectively). Cesium TTF value was lower in the case of a weekly rain (0.1 against 0.2 Bq kg(fresh weight)(-1) by Bqm(-2)). TTF values were similar for twice-a-week rainfalls, whatever their intensity. They were higher for weekly rains of high intensity (between 0.3 and 0.75 Bq kg(fresh weight)(-1) by Bqm(-2) against 0.1-0.35 Bq kg(fresh weight)(-1) by Bq m(-2), depending on the radionuclides). TTF values attested that wash-off was more efficient when rainfalls lasted longer. Field loss on the top of the leaves was well described by an offset exponential model. The half-lives varied with rainfall characteristics from 4 days for cesium, strontium and barium to 20 days for tellurium. The offset value varied between 0% for tellurium (high intensity rainfalls) and 14% for cesium (medium intensity rainfalls).  相似文献   
34.
As part of a requirement to improve the assessment of the impact of radioactive fallout on consumed agricultural products, bean plants at four development stages (seedlings, preflowering, late flowering and mature plants) were contaminated by dry deposition of (137)Cs, (85)Sr, (133)Ba and (123m)Te aerosols. The influence of two rain scenarios and of the development stage upon contamination on interception, retention, and translocation to pods was studied. Interception of the four radionuclides was almost identical and varied from 30 to 60% with increasing development stage. The most important rain parameter was the time which elapsed between contamination and the first rain. Whatever the development stage, rain washed off more cesium from the leaves when it occurred 2 days after the deposit (37% at the seedling stage, for example) rather than later on (6 days, 27%), due to rapid migration of Cs in the plant. The first rain washed off nearly 40% of Ba whatever the scenario. For later stages, Sr and Ba were more washed off by heavy weekly rains than by weak twice-a-week rains, perhaps because of the Sr/Ba-contaminated material loss associated with wash off (desquamation of cuticles). Te showed little wash off (less than 5%). Wash off decreased with an older development stage for a weak rain intensity, due to the superimposition of leaves. Heavy rains removed this shelter effect. At harvest, rain effect was no longer detectable as foliar activity was similar for both rain scenarios. Translocation factors (TF) for strontium and barium increased from 6 x 10(-3) to 1 x 10(-1) with the plant development stage upon contamination, whereas those for cesium remained almost unchanged between 2 x 10(-1) and 4 x 10(-1). Flowering is the most critical stage towards residual contamination in pods at harvest, with the exception of direct deposit on pods at the mature stage (TF values are one order of magnitude higher). TF value for Te was 6.5 x 10(-2) and was due to direct deposit. Modelling reflected the trends, through the differential values of the wash off and absorption coefficients, of what was reported for experimental results.  相似文献   
35.
36.
Nitrate (NO3-) pollution of surface and subsurface waters has become a major problem in agricultural ecosystems. Field trials were conducted from 1996 to 1998 at St-Emmanuel, Quebec, Canada, to investigate the combined effects of water table management (WTM) and nitrogen (N) fertilization on soil NO3- level, denitrification rate, and corn (Zea mays L.) grain yield. Treatments consisted of a combination of two water table treatments: free drainage (FD) with open drains at a 1.0-m depth from the soil surface and subirrigation (SI) with a design water table of 0.6 m below the soil surface, and two N fertilizer (ammonium nitrate) rates: 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). Compared with FD, SI reduced NO3(-)-N concentrations in the soil profile by 37% in spring 1997 and 2% in spring 1998; and by 45% in fall 1997 and 19% in fall 1998 (1 mg NO3(-)-N L(-1) equals approximately 4.43 mg NO3- L(-1)). The higher rate of N fertilization resulted in greater levels of NO3(-)-N in the soil solution. Denitrification rates were higher in SI than in FD plots, but were unaffected by N rate. The N200 rate produced higher yields than N120 in 1996 and 1997, but not 1998. Corn yields in SI plots were 7% higher than FD plots in 1996 and 3% higher in 1997, but 25% lower in 1998 because the SI system was unable to drain the unusually heavy June rains, resulting in waterlogging. These findings suggest that SI can be used as an economical means of reducing NO3- pollution without compromising crop yields during normal growing seasons.  相似文献   
37.
Inputs of nutrients (P and N) to freshwaters can cause excessive aquatic plant growth, depletion of oxygen, and deleterious changes in diversity of aquatic fauna. As part of a "National Agri-Environmental Standards Initiative," the Government of Canada committed to developing environmental thresholds for nutrients to protect ecological condition of agricultural streams. Analysis of data from >200 long-term monitoring stations across Canada and detailed ecological study at ~70 sites showed that agricultural land cover was associated with increased nutrient concentrations in streams and this, in turn, was associated with increased sestonic and benthic algal abundance, loss of sensitive benthic macroinvertebrate taxa, and an increase in benthic diatom taxa indicative of eutrophication. Chemical thresholds for N and P were defined by applying five approaches, employing either a predetermined percentile to a water chemistry data set or a relationship between water chemistry and land cover, to identify boundaries between minimally disturbed and impaired conditions. Comparison of these chemical thresholds with biological thresholds (derived from stressor-response relationships) produced an approach for rationalizing these two types of thresholds and deriving nutrient criteria. The resulting criteria were 0.01 to 0.03 mg L(-1) total P and 0.87-1.2 mg L(-1) total N for the Atlantic Maritime, 0.02 mg L(-1) total P and 0.21 mg L(-1) total N for the Montane Cordillera, ~0.03 mg L(-1) total P and ~1.1 mg L(-1) total N for the Mixedwood Plains, and ~0.10 mg L(-1) total P and 0.39-0.98 mg L(-1) total N for the interior prairies of Canada. Adoption of these criteria should result in greater likelihood of good ecological condition with respect to benthic algal abundance, diatom composition, and macroinvertebrate composition.  相似文献   
38.
A Method for Improving the Management of Controversial Wetland   总被引:3,自引:0,他引:3  
Valley bottom wetlands in agricultural landscapes often are neglected in national and regional wetland inventories. Although these areas are small, located in the bottomlands of the headwater catchments, and scattered in the rural landscape, they strongly influence hydrology, water quality, and biodiversity over the whole catchment area. Valley bottom wetlands often are considered as controversial wetlands. Awareness of the functional role of wetlands is increasing, in parallel with their progressive disappearance in intensive farming landscapes. The need to improve tools for controlling wetland management is a primary consideration for decision makers and land users. This article proposes a method for the inventory of valley bottom wetlands. The method is based on the functional analysis of potential, existing, and efficient valley bottom wetlands (the PEEW approach). Several indicators are proposed for checking the validity of such an approach. Potential wetlands are delineated by means of a topographic index using topographic and pedoclimatic criteria computed from a Digital Elevation Model and easily accessible databases. Existing wetlands are identified from observed surface moisture, the presence of specific wetland vegetation, or soil feature criteria. Efficient wetlands are defined through a given function, such as flow or pollutant regulation or biodiversity control. An analysis of areas at the limits between potential, existing, and efficient wetlands highlights land cultivated or drained in the past, which currently represents negotiating areas in which rehabilitation and other intended management actions can be implemented.  相似文献   
39.
The Svalbard Shoreline Field Trials quantified the effectiveness of sediment relocation, mixing, bioremediation, bioremediation combined with mixing, and natural attenuation as options for the in situ treatment of oiled mixed-sediment (sand and pebble) shorelines. These treatments were applied to oiled plots located in the upper beach at three experimental sites, each with different sediment character and wave-energy exposure. Systematic monitoring was carried out over a 400-day period to quantify oil removal and to document changes in the physical character of the beach, oil penetration, oil loading, movements of oil to the subtidal environment, biodegradation, toxicity, and to validate oil-mineral aggregate formation.The results of the monitoring confirmed that sediment relocation significantly accelerated the rate of oil removal and reduced oil persistence where oil was stranded on the beach face above the level of normal wave activity. Where the stranded oil was in the zone of wave action, sediment relocation accelerated the short-term (weeks) rate of oil loss from the intertidal sediments.Oil removal rates on a beach treated by mechanical mixing or tilling were not significantly higher than those associated with natural recovery. However there is evidence that mixing/tilling may have enhanced microbial activity for a limited period by increasing the permeability of the sediment.Changes in the chemical composition of the oil demonstrated that biodegradation was significant in this arctic environment and a bioremediation treatment protocol based on nutrient enrichment effectively doubled the rate of biodegradation. However, on an operational scale, the success of this treatment strategy was limited as physical processes were more important in causing oil loss from the beaches than biodegradation, even where this oil loss was stimulated by the bioremediation protocols.  相似文献   
40.
Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号