首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
  国内免费   1篇
安全科学   1篇
环保管理   7篇
综合类   5篇
基础理论   11篇
环境理论   1篇
污染及防治   10篇
评价与监测   2篇
社会与环境   7篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1990年   1篇
  1985年   1篇
  1979年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有44条查询结果,搜索用时 0 毫秒
21.
Crepipatella dilatata (Calyptraeidae) is a common intertidal or shallow subtidal protandric hermaphroditic gastropod. Intertidal snails from Puerto Madryn, Chubut, Argentina (42°46′37″S, 64°54′51″ W), showed a high prevalence, up to 46?%, of a castrating larval microphallid trematode. Reproductive success was studied during a 2-year period from September 2007 to August 2009, and the results were compared to those from an unparasitized subtidal sample. Brooding females and males were never found infected. The proportion of brooding females was higher in months with a higher prevalence of infection. The number of brooding females in the intertidal sample was higher than in the subtidal sample. Generalized linear models were utilized to determine the effects of parasitism on the reproductive success of the host population. Anticipated reproduction in smaller females in the intertidal sample, increased reproductive success in months with higher prevalence, and unparasitized males are interpreted as fitness responses to ensure host population survival when the prevalence of trematode infection is high.  相似文献   
22.
Two classes of explanations for covariation between activity level and metabolic rate among conspecifics have been proposed. First, individual-level variation in activity exhibited during the measurement of metabolic rate should covary with routine metabolic rate because movement increases respiration (a methodological relationship). Second, energetic-based hypotheses posit relationships between individual activity measured under more natural conditions and baseline measures of metabolic rate, among other behavioral, physiological, and life-history traits (functional relationships). Here, we examined these potential relationships between individual behavior and metabolic rate in the mud crab (Panopeus herbstii). Specifically, we tested for (1) an effect of crab activity in metabolic chambers (activitychamber) on routine metabolic rate (RMR), and (2) an effect of crab activity in mesocosms that mimicked field conditions (activitymesocosm) on standard metabolic rate (SMR). To test for context dependence, we assessed both activity-metabolic rate relationships in the absence and presence of predation threat from toadfish (Opsanus tau) in the form of waterborne chemical cues. Individual variation in activitymesocosm and RMR was repeatable over time. In support of a methodological relationship, individual differences in RMR were partially explained by crab activitychamber. After accounting for this methodological relationship, individual SMR was inversely related to activitymesocosm, supporting an allocation model that predicts behavior and baseline metabolic rate compete for finite energy reserves. We found no evidence of context dependence in either activity-metabolic rate relationship. Thus, our study emphasizes the importance of considering methodological artifacts in elucidating functional relationships between individual behavior and energetics.  相似文献   
23.
24.
The presence of humic acid (HA) in water poses environmental problems because it enhances the transport of several contaminants. A series of column experiments was conducted toward studying HA transport in different porous media under various pH, ionic strength, and flow rate conditions. The results showed that decreasing pH and increasing ionic strength increased adsorption and therefore delayed the transport of HA in porous media. However, increasing flow rate accelerated the transport of HA in porous media. The effects of pH, ionic strength, and flow rate varied with the solid matrix and were more evident in sands of smaller average particle diameter than in those with larger ones. These factors must be considered when predicting the environmental fate of HA. The results also suggested that HA adsorption was an important process controlling HA transport and should be considered in studies of HA behavior in porous media.  相似文献   
25.
26.
Managing risk by adapting long-lived infrastructure to the effects of climate change must become a regular part of planning for water supply, sewer, wastewater treatment, and other urban infrastructure during this century. The New York City Department of Environmental Protection (NYCDEP), the agency responsible for managing New York City’s (NYC) water supply, sewer, and wastewater treatment systems, has developed a climate risk management framework through its Climate Change Task Force, a government-university collaborative effort. Its purpose is to ensure that NYCDEP’s strategic and capital planning take into account the potential risks of climate change—sea-level rise, higher temperature, increases in extreme events, changes in drought and flood frequency and intensity, and changing precipitation patterns—on NYC’s water systems. This approach will enable NYCDEP and other agencies to incorporate adaptations to the risks of climate change into their management, investment, and policy decisions over the long term as a regular part of their planning activities. The framework includes a 9-step Adaptation Assessment procedure. Potential climate change adaptations are divided into management, infrastructure, and policy categories, and are assessed by their relevance in terms of climate change time-frame (immediate, medium, and long term), the capital cycle, costs, and other risks. The approach focuses on the water supply, sewer, and wastewater treatment systems of NYC, but has wide application for other urban areas, especially those in coastal locations.  相似文献   
27.
Soil solution chemistry influences the sorption and transport behavior of hydrophobic organic compounds (HOCs) in soil. We used both batch and column studies to investigate the influence of ionic strengths (0.03 and 1.5 M) and flow velocities (12 and 24 cm h-1) on sorption and transport of naphthalene (NAP) in aggregated soil. Sorption parameters such as the Freundlich coefficient (Kf) and exponent (n) calculated from batch studies and column experiments were also compared. Retardation of NAP transport was greater at higher solution ionic strength, which may be attributed to greater sorption affinity due to enhanced aggregation of the sorbent. The effect of ionic strength on sorption of NAP observed in the batch study was consistent with the results from the column study. The Kf and n values obtained from the batch study for the two ionic strengths ranged from 7.8 to 13.7 and 0.68 to 0.80, respectively, whereas the Kf and n values obtained from the column study ranged from 7.9 to 9.9 and 0.73 to 0.85, respectively. The effluent breakthrough curve (BTC) of NAP at a flow rate of 24 cm h-1 showed significant chemical and physical nonequilibrium behavior, implying that a considerable amount of sorption in aggregated soil was time dependent when flow was relatively fast. The BTCs calculated with the parameters determined from batch studies compared poorly with the measured BTCs. The potential for nonequilibrium transport should be incorporated in models used for predicting the fate and transport of HOCs. Furthermore, caution is required when extrapolating the results from batch studies, especially for aggregated soils.  相似文献   
28.
Seedlings from three open-pollinated loblolly pine (Pinus taeda L.) families grown in a mixture of commercial peat moss and grade 3 vermiculite (1:3 by volume) or a mixture of mineral soil and peat (1:1 by volume) were exposed to 0, 160 or 320 ppb ozone (O3) for 6h/day, 4 days/week for 8 weeks beginning 12 weeks after transplanting. Before exposures began, seedlings grown in the vermiculite-peat substrate were taller but smaller in diameter than those grown in the mineral soil-peat substrate. After 8 weeks of exposure, seedlings grown in the mineral soil-peat substrate were significantly larger in diameter and total biomass than those grown in the vermiculite-peat substrate. Primary needle and secondary needle injury increased with increasing O3 concentrations. Suppression of diameter growth, shoot weight and root weight was linear as O3 concentration increased. The effect of O3 on height or diameter growth or shoot biomass was not influenced by substrate type; but the suppression of root biomass due to O3 was dependent on substrate, with greater suppression in biomass occurring in the vermiculite-peat substrate. Foliar injury due to O3 was slightly greater in family 8-103, but growth suppression due to O3 was not significantly different among the families. Based on root biomass, response of seedlings to O3 was substrate-dependent.  相似文献   
29.
At the smallest scales of sediment transport in rivers, the coherent structures of the turbulent boundary layer constitute the fundamental mechanisms of bedload transport, locally increasing the instantaneous hydrodynamic forces acting on sediment particles, and mobilizing them downstream. Near the critical threshold for initiating sediment motion, the interactions of the particles with these unsteady coherent structures and with other sediment grains, produce localized transport events with brief episodes of collective motion occurring due to the near-bed velocity fluctuations. Simulations of these flows pose a significant challenge for numerical models aimed at capturing the physical processes and complex non-linear interactions that generate highly intermittent and self-similar bedload transport fluxes. In this investigation we carry out direct numerical simulations of the flow in a rectangular flat-bed channel, at a Reynolds number equal to Re = 3632, coupled with the discrete element method to simulate the dynamics of spherical particles near the bed. We perform two-way coupled Lagrangian simulations of 48,510 sediment particles, with 4851 fixed particles to account for bed roughness. Our simulations consider a total of eight different values of the non-dimensional Shields parameter to study the evolution of transport statistics. From the trajectory and velocity of each sediment particle, we compute the changes in the probability distribution functions of velocities, bed activity, and jump lengths as the Shields number increases. For the lower shear stresses, the intermittency of the global bedload transport flux is described by computing the singularity or multifr actal spectrum of transport, which also characterizes the widespread range of transport event magnitudes. These findings can help to identify the mechanisms of sediment transport at the particle scale. The statistical analysis can also be used as an ingredient to develop larger, upscaled models for predicting mean transport rates, considering the variability of entrainment and deposition that characterizes the transport near the threshold of motion.  相似文献   
30.
The odor panel using the syringe dilution technique has been successfully used to judge the effectiveness of control equipment in eliminating industrial odor problems by monitoring stack emissions. Data is presented using this odor panel method for efficiency tests of direct-flame fume incinerators performed in a large variety of industrial process applications, including pulp and paper mills, rubber processing plants, food processing plants, wire enameling plants, glass fiber manufacturing plants, paint bake ovens, brake manufacturing plants, caster manufacturing plants, rendering plants, and chemical plants. Test data shows that this method of measuring odor using the syringe dilution technique is a useful and practical tool in analyzing odor problems and determining the effectiveness of control equipment by monitoring stack emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号