首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   1篇
  国内免费   1篇
安全科学   2篇
环保管理   1篇
综合类   13篇
基础理论   15篇
污染及防治   48篇
评价与监测   9篇
社会与环境   7篇
  2023年   4篇
  2022年   11篇
  2021年   6篇
  2020年   6篇
  2019年   11篇
  2018年   5篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   4篇
  2013年   11篇
  2012年   4篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有95条查询结果,搜索用时 250 毫秒
31.
Tripathi  Rahul  Dhal  B.  Shahid  Md  Barik  S. K.  Nayak  A. D.  Mondal  B.  Mohapatra  S. D.  Chatterjee  D.  Lal  B.  Gautam  Priyanka  Jambhulkar  N. N.  Fitton  Nuala  Smith  Pete  Dawson  T. P.  Shukla  A. K.  Nayak  A. K. 《Environment, Development and Sustainability》2021,23(8):11563-11582

A study was conducted to examine the interrelationships among socioeconomic factors, household consumption patterns, calorie intake and greenhouse gas emissions factors in rural eastern India based on household survey data. Findings indicated that higher monthly per capita incomes (12.1–80.1$) were associated with greater average calorie intakes (2021–2525 kcal d?1). As estimated by the FEEDME model, in total 17.2% of the population was calorie malnourished with a regional disparity of 29.4–18.2% malnourishment. Greenhouse gas (GHG) emissions were calculated only on the basis of crop and livestock production and consumption. Rice accounted for the highest share of total GHG emissions, on average 82.6% on a production basis, which varied from 58.1% to 94.9% in regional basis. Rice contributed the greatest share (~?65% and 66.2%) in terms of both calories and GHG emissions (CO2 eq y?1), respectively, on a consumption basis. We conclude that extensive rice farming and increasing animal product consumption are dominant factors in the higher carbon footprint in this region and are likely to further increase with increase in per capita income. This study provides useful information to help for better crop planning and for fine-tuning food access policy, to reduce carbon footprint and calorie malnutrition.

  相似文献   
32.
Environmental Science and Pollution Research - Mining waste that is rich in iron-, calcium- and magnesium-bearing minerals can be a potential feedstock for sequestering CO2 by mineral carbonation....  相似文献   
33.
34.
This study aimed to assess the impacts of climate change on residential energy consumption in Dhaka city of Bangladesh. The monthly electricity consumption data for the period 2011–2014 and long-term climate variables namely monthly rainfall and temperature records (1961–2010) were used in the study. An ensemble of six global circulation models (GCMs) of coupled model intercomparison project phase 5 (CMIP5) namely, BCCCSM1-1, CanESM2, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, and NorESM1-M under four representative concentration pathway (RCP) scenarios were used to project future changes in rainfall and temperature. The regression models describing the relationship between historical energy consumption and climate variables were developed to project future changes in energy consumptions. The results revealed that daily energy consumption in Dhaka city increases in the range of 6.46–11.97 and 2.37–6.25 MkWh at 95% level of confidence for every increase of temperature by 1 °C and daily average rainfall by 1 mm, respectively. This study concluded that daily total residential energy demand and peak demand in Dhaka city can increase up to 5.9–15.6 and 5.1–16.7%, respectively, by the end of this century under different climate change scenarios.  相似文献   
35.
Hair and nail samples from young Pakistani adults were separately analyzed for quantification of Cd, Cr, Cu, Ni, Pb, and Zn concentrations. The concentrations of these metals were also analyzed in commonly consumed local foods to evaluate potential correlation of hair and nail concentrations with diet. Pearson correlation coefficients ranged from 0.349 to 0.999, demonstrating diet to be a significant contributor for accumulation of heavy metals in humans.  相似文献   
36.
Environmental Science and Pollution Research - Salinity is a worldwide environmental problem of agricultural lands. Smoke and plant growth-promoting bacteria (PGPR) are individually used to improve...  相似文献   
37.
The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose–response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2n factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (10%, class-I) and moderately (10 < d  30%, class-II), highly (30 < d  50%, class-III) and very highly (>50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.  相似文献   
38.
Species Redundancy and Ecosystem Reliability   总被引:35,自引:0,他引:35  
  相似文献   
39.
Integrated rice–fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice–fish, fish–fingerlings, fruits, vegetables, rice–fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice–fish refuge followed by rice–fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice–fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice–fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish–fingerlings enterprise, respectively.  相似文献   
40.
In a hydroponic culture, experiments were performed to study the influence of potassium (K) supplementation (0, 20, 40, 60, 80, and 100 mg L?1) on the arsenic (As; 0, 8, and 10 mg L?1)-accrued changes in growth traits (plant biomass, root–shoot length) and the contents of lepidine, As and K, in garden cress (Lepidium sativum Linn.) at 10 days after treatment. The changes in these traits were correlated with shoot proline content, protein profile, and the activities of antioxidant enzymes namely superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.8.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11). In general, As-alone treatments significantly decreased the growth traits but lead to significant enhancements in shoot proline and enzyme activities. K-supplementation to As-treated L. sativum seedlings decreased shoot-As content, reduced As-induced decreases in growth traits but enhanced the content of shoot proline, and the activities of the studied enzymes maximally with K100 + As8 and As10 mg L?1. Both 8 and 10 mg L?1 of As drastically downregulated the shoot proteins ranging from 43–65 kDa. With As10 mg L?1, there was a total depletion of protein bands below 23 kDa; however, K80 mg L?1 maximally recovered and upregulated the protein bands. Additionally, protein bands were downregulated (at par with As-alone treatment) above K80 mg L?1 level. Interestingly, As-stress increased lepidine content in a dose-dependent manner which was further augmented with the K-supplementation. It is suggested that K protects L. sativum against As-toxicity by decreasing its accumulation and strengthening antioxidant defense system and protein stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号