首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   3篇
综合类   5篇
基础理论   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
排序方式: 共有6条查询结果,搜索用时 187 毫秒
1
1.
为探讨大型海藻缘管浒苔(Ulva linza)对氮、磷加富的生理响应及其机制,分析了氮、磷浓度变化对藻体相对生长速率(Rr.g),氮、磷富集,叶绿素(Chl)含量,类胡萝卜素(Car)含量,色素比值(Chl a/Chl b、Chl/Car)以及叶绿素荧光参数的影响.结果表明,在30μmol·L-1P浓度不变条件下,随着N浓度的增加,藻体P含量持续降低,而其Rr、g、N含量、Chl含量、Car含量、色素比值(Chl a/Chl b、Chl/Car)和叶绿素荧光参数均逐渐上升,N3处理(500μmol· L-1 N)缘管浒苔Rr.g和叶绿素荧光参数均达到最大值,N4处理(1 000 μmol·L-1)缘管浒苔Chl含量、Car含量和Chl a/Chl b比值均达到最大值.在500 μmol·L-1N浓度不变条件下,依次增加P浓度,缘管浒苔Rr,g没有显著差异,N含量没有显著变化,而P含量则呈明显上升趋势,其他指标变化幅度小.综上所述,与P相比,N的变化对缘管浒苔生长、光合色素和光合作用的影响更明显,在N浓度为500 μmol·L-1、P浓度为30 μmol ·L-1、N/P比值为16.67条件下,藻体生长最佳.当水体富营养化加剧时,缘管浒苔富集氮、磷的能力持续上升.  相似文献   
2.
铜藻基载铁活性炭的制备及其对亚甲基蓝的吸附特性研究   总被引:1,自引:1,他引:0  
以一种大型海藻——铜藻为原料,Fe Cl3·6H2O为活化剂,采用超声浸渍-原位合成法制备了铜藻基载铁活性炭(Fe/SAC),并以活性炭得率和亚甲基蓝吸附值为指标,通过正交法考察了活化温度、活化时间和浸渍比的影响.同时,采用X射线衍射、扫描电镜和比表面积分析仪对最优结果进行表征,并考察了Fe/SAC吸附亚甲基蓝的热力学与动力学特性.结果表明,Fe/SAC的最优制备工艺条件为活化温度600℃、活化时间1 h、浸渍比1∶1,此时的活性炭得率为39.5%,亚甲基蓝吸附值为255.67 mg·g~(-1);最优工艺条件下制得的Fe/SAC比表面积为558.31 m2·g~(-1),其负载的铁组分主要为Fe3O4和Fe O;亚甲基蓝在Fe/SAC上的吸附过程符合准二级动力学模型,Langmuir等温吸附模型能够很好地描述吸附平衡过程,该吸附是熵增加的自发吸热(ΔS0、ΔG0、ΔH0)过程,升温有利于吸附.  相似文献   
3.
高比表面积铜藻基活性炭的制备及工艺优化   总被引:4,自引:2,他引:2  
以铜藻为原料,在对其进行元素含量、生化组成分析的基础上,分别采用ZnCl2活化法和H3PO4活化法制备活性炭,并以活性炭得率、碘吸附值、焦糖脱色率为指标,采用正交法考察了升温速率、活化温度、浸渍比(活化剂/铜藻质量比)等因素的影响,得到最佳工艺条件.同时,采用扫描电镜(SEM)、Brunauer-Emmet-Tller(BET)比表面积等方法分析活性炭特征.结果表明,铜藻原料粒度对制得的活性炭性能影响显著,106~180μm的颗粒较为适合.ZnCl2活化法制得的活性炭吸附性能明显优于H3PO4活化法;ZnCl2活化法的最佳工艺条件为:升温速率10℃.min-1、活化温度600℃、活化时间2h、浸渍比4,在保证活性炭得率超过30%的基础上,制备的活性炭比表面积为2314.58m2.g-1,碘吸附值为835.3mg.g-1,焦糖脱色率为110%,性能明显优于其他大型海藻原料所制备的活性炭,是陆地传统活性炭原料的有效补充.  相似文献   
4.
滨海电厂温排水对海洋环境的影响研究进展   总被引:2,自引:0,他引:2  
随着我国滨海电厂数量的增加,温排水对周边海域水环境和水生态的影响日益突出。本文参照《海洋工程环境影响评价技术导则》中界定的海洋工程环境影响评价的主要内容,分析温排水对海域水文条件、海水水质、海洋生物多样性、生物洄游和产卵场、赤潮等方面可能产生的影响,并探讨进一步的研究方向。  相似文献   
5.
运用生命周期评价(LCA)的方法,以原料生长、原料运输、活性炭制备和活性炭吸附CO_2 4个阶段为系统边界,对2种不同方法制备的铜藻基活性炭系统进行分析,计算其全生命周期温室气体(GHG)排放量。结果表明:每生产1 kg活性炭,ZnCl_2活化法活性炭(ZAC)和水热炭化-KOH活化法活性炭(HKAC)全生命周期温室气体净排放量(以CO_2-eq计)分别为5.926 kg和7.734 kg;活性炭制备阶段电力消耗带来的间接温室气体排放是最大的排放源;提高活性炭得率和活性炭中碳元素含量有利于减少制备阶段的直接温室气体排放。最后,依据计算和分析结果给出相应建议,以期对活性炭生产与应用过程的碳减排研究提供参考。  相似文献   
6.
以铜藻为原料,采用氯化锌活化法、初湿含浸法制备了负载纳米零价铁铜藻基活性炭(NZVI/SAC),并采用X射线衍射、扫描电镜和X射线光电子能谱等方法对材料进行了分析.结果表明,纳米零价铁颗粒以50~150 nm粒径的球形形态负载在铜藻基活性炭上,且NZVI/SAC表面具有一层以铁的氧化物形态存在的核壳结构.对水中Cr(Ⅵ)的去除实验表明,NZVI/SAC是一种适用于高浓度Cr(Ⅵ)废水的处理材料;NZVI/SAC去除水中Cr(Ⅵ)的机制是还原反应与吸附共同作用,p H4时NZVI/SAC对Cr(Ⅵ)的去除以还原作用为主,p H4时材料对Cr(Ⅵ)的去除主要以NZVI和SAC的吸附作用决定;当载铁量为30%、p H=2、温度为30℃时,2 g·L-1的NZVI/SAC能将100 mg·L-1Cr(Ⅵ)在10 min内快速降解,此时以还原反应为主,最终去除率达100%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号