排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
本文基于WRF-CMAQ模型定量分析了气象条件变化对PM2.5的影响.全国337个城市2018~2019秋冬季气象条件转差导致PM2.5平均浓度同比上升约5.55%.24个省市气象条件同比转差,北京气象转差致使PM2.5同比上升约3.66%.从重点区域来看,京津冀及周边“2+26”城市气象条件转差最显著,汾渭平原次之,长江三角洲(以下称长三角)基本持平,分别导致PM2.5浓度同比上升约9.4%、8.3%、1.1%.“2+26”城市和汾渭平原气象条件在11月、1月、2月转差,10月、3月气象条件转好.长三角则10月、11月、3月气象条件转差;12月、1月、2月转好.“2+26”城市2018~2019秋冬季PM2.5浓度同比上升主要为气象条件转差所致;汾渭平原PM2.5同比变化较小,人为减排有效抵消了气象条件转差带来的不利影响;长三角PM2.5浓度同比下降,与气象条件变幅小且污染排放较去年同期降低有关. 相似文献
2.
为了解多种新型受体模型的适用性,利用正定矩阵分解/多元线性引擎2-物种比值(PMF/ME2-SR)、偏目标转换-正定矩阵分解(PTT-PMF)、正定矩阵分解(PMF)和化学质量平衡(CMB)这4种受体模型对我国北方典型城市细颗粒物(PM2.5)数据进行同步解析并互相验证.结果发现,燃煤源(25%~26%)、扬尘源(19%~21%)、二次硝酸盐(17%~19%)、二次硫酸盐(16%)、机动车源(13%~15%)、生物质燃烧源(4%~7%)和钢铁源(1%~2%)这7种主要污染源对研究地区PM2.5有贡献.通过比较不同模型获得的源成分谱和源贡献以及计算各源的差异系数(CD)和平均绝对误差(AAE),发现4种模型的解析结果具有较高的一致性(平均CD值在0.6~0.7之间),但不同模型对各污染源中组分的识别存在差异.相比于传统PMF模型,PMF/ME2-SR模型由于纳入一次源类的特征比值,能够更好地区分源谱特征较为相似的源类,如扬尘源的CD和AAE分别比PMF模型低15%和54%; PTT-PMF模型以实测一次源谱和虚拟二次源谱为约束目标,计算的二次硫... 相似文献
3.
在建立成都市大气污染物排放清单的基础上,采用源开关敏感性分析法,设置8个排放情景,基于WRF-CMAQ模型模拟分析了2015年1、4、7和10月这4个典型代表月份的大气污染传输和不同行业对成都市PM2.5污染贡献.结果表明成都市PM2.5污染较重,特别是1月达到130μg·m-3以上;浓度的高值集中在中心城区,且与周边城市PM2.5污染连接成片.由于气团比较稳定,大气污染物的区域传输能力较弱,成都市PM2.5污染以本地源的贡献为主,占比为61%.从行业贡献来看,移动源、扬尘源和生活源对成都市PM2.5年均浓度贡献率分别为29%、26%和24%,是影响PM2.5污染的主要污染源,下一步应强化对这3类源的污染控制. 相似文献
1