首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   37篇
  国内免费   132篇
安全科学   7篇
废物处理   5篇
环保管理   4篇
综合类   188篇
基础理论   18篇
污染及防治   58篇
评价与监测   10篇
社会与环境   3篇
灾害及防治   2篇
  2024年   2篇
  2023年   8篇
  2022年   7篇
  2021年   17篇
  2020年   20篇
  2019年   16篇
  2018年   6篇
  2017年   15篇
  2016年   16篇
  2015年   15篇
  2014年   11篇
  2013年   15篇
  2012年   24篇
  2011年   18篇
  2010年   8篇
  2009年   14篇
  2008年   18篇
  2007年   14篇
  2006年   17篇
  2005年   16篇
  2004年   10篇
  2003年   6篇
  2002年   2篇
排序方式: 共有295条查询结果,搜索用时 375 毫秒
11.
水铁矿及其胶体对砷的吸附与吸附形态   总被引:13,自引:10,他引:3  
采用吸附实验,通过吸附动力学和吸附等温模型,研究了水铁矿及其胶体对As(Ⅲ)和As(Ⅴ)的吸附能力.在此基础上,使用连续提取和As化学形态提取技术分别对水铁矿及其胶体固相上吸附As的结合形态和化学形态进行提取分析.吸附动力学研究以及Langmuir和Freundlich两种吸附等温模型拟合结果表明,水铁矿及其胶体对As的吸附为多层吸附,且易于进行.水铁矿胶体对As(Ⅲ)和As(Ⅴ)的吸附量分别为194.8 g·kg~(-1)和107.3 g·kg~(-1),而水铁矿对As(Ⅲ)和As(Ⅴ)的吸附能力分别为155.2 g·kg~(-1)和104.4 g·kg~(-1),均低于水铁矿胶体.水铁矿及其胶体吸附的As以专性吸附As、无定形铁氧化物结合As和晶型铁氧化物结合As形式存在,胶体上未形成残渣态As.因此,水铁矿胶体吸附As的牢固程度低于吸附As后形成残渣态As的水铁矿,且所吸附的As容易重新释放到环境中,增加环境风险.水铁矿单独存在时不具有将As(Ⅴ)还原为As(Ⅲ)的能力.  相似文献   
12.
张思  何江涛  朱晓婧 《环境科学》2016,37(12):4651-4661
有机质胶体与有机污染物的相互作用会影响污染物在多孔介质中迁移转化等环境行为.为研究有机质胶体对药物和个人护理品(PPCPs)在土壤环境中迁移的影响,本实验以卡马西平(CBZ)为目标污染物,用商用腐殖酸制备有机质胶体,分别选择石英砂、标准土和野外所取土样为研究介质,通过室内土柱模拟实验探究有机质胶体存在时污染物在多孔介质中的迁移行为.结果表明,描述一维溶质运移的两点化学非平衡模型能够较好模拟CBZ在各介质土中的运移过程,说明污染物运移过程中与介质间发生了化学非平衡吸附作用;石英砂柱中加入胶体后,对CBZ的吸附过程无明显影响,但在解吸时阻滞因子及滞留量变小,可见胶体与石英砂间作用微弱,解吸过程中胶体与污染物结合形成复合体后对污染物有增溶作用;胶体存在时,标准土和自然土对CBZ的吸附量和迁移阻滞强度均明显大于石英砂,其中有机质及黏土矿物的作用最为明显,有机质中的低能/高能吸附位点以及黏土矿物极性表面均能够固定污染物;由于有机质含量较高,自然土对CBZ在吸附-解吸过程中的阻滞截留强度大于标准土.针对本实验中CBZ的迁移情况,提出了疏水性有机污染物在含有机质胶体土壤中的迁移过程中各种作用的概念模型.  相似文献   
13.
王蕊  刘菲  陈鸿汉  陈楠  张佳文  陈明 《环境科学学报》2013,33(11):3060-3067
通过静态实验,考察了电子供体类型及用量对厌氧条件下微生物去除地下水中高氯酸盐的影响.结果表明,电子供体醋酸盐和H2的加入,可以明显提高ClO4-的去除率,驯化后的微生物去除ClO4-的速率比未加入电子供体时提高约1.4~3倍.Monod动态模型能很好地拟合两种电子供体环境下ClO4-的微生物去除过程,分别以醋酸盐和H2作为电子供体时,基质半饱和常数Ks为12.6 mg·L-1和2.2 mg·L-1,最大比基质消耗速率Vm为0.45 d-1和0.08 d-1.动力学参数表明,本实验条件下,异养型混合菌去除ClO4-的效果明显优于自养型混合菌;在少数受高浓度ClO4-污染的地下水环境中,为了提高ClO4-的去除速率只有通过增加菌体浓度或提高微生物酶的活性来实现.随着电子供体醋酸盐用量增加,ClO4-的(比)消耗速率逐渐增大.当初始CH3COO-与ClO4-的比例为3.80 mg(COD)/mg(ClO4-)时,比消耗速率v最大(0.27 d-1).  相似文献   
14.
采用改性灰岩作为除氟材料,通过批实验和柱实验,考察不同条件下的除氟效果,并探讨了其实际应用的可能性。结果表明:FeCl3溶液联合灰岩除氟,可使高氟水中的氟浓度达到国家饮用水标准,在含氟水样中加灰岩后,直接加FeCl3会促进灰岩对氟的去除效率。在氟离子浓度为5 mg/L,粒径0.2~0.5 mm的灰岩为1 g的条件下,铁离子含量为0.016 mmol/L时,即可达到去除的最佳效果,除氟率可达95.74%。柱实验说明在FeCl3溶液浓度一定时,除氟率随着总出水量的增加而提高;填充的灰岩总量不变时,随着FeCl3溶液浓度的增加,除氟效果明显增加,说明本实验具有实际应用的可能性。  相似文献   
15.
Fe3O4/TiO2-H2O2非均相类Fenton体系对3,4-二氯三氟甲苯的降解   总被引:1,自引:1,他引:0  
用Fe_3O_4/Ti O_2-H_2O_2体系对3,4-二氯三氟甲苯(3,4-DCBTE)进行降解反应研究,同时考察了pH值、催化剂投加量、H_2O_2投加量、温度等因素对3,4-DCBTE降解效率的影响.实验结果表明,Fe_3O_4/Ti O_2-H_2O_2非均相类Fenton体系对3,4-二氯三氟甲苯的处理效果极佳;并且在H_2O_2投加量为45.0 mg·L~(-1)、Fe_3O_4/TiO_2的物质的量比为1∶1、pH=3.0、温度为40.0℃的条件下反应效果最佳,去除率高达99.1%.同时从实验结果可以看出,pH在2.0~7.0范围内该体系对3,4-二氯三氟甲苯均有降解效果,说明该体系相比于传统的Fenton体系有较宽的pH适用范围.目标污染物的降解符合一级反应动力学,其发生反应所需的活化能为36.9 k J·mol~(-1).  相似文献   
16.
我国流域水生态完整性评价方法构建   总被引:16,自引:11,他引:5  
流域水生态完整性评价是指通过对水生态系统中不同水生态指标(生物和非生物)的监测以及由数学方法综合形成的综合评价指数,来反映水生态系统完整性状况。近年来,世界各国水环境管理政策发生了变化,开始强调生态保护,重视水体的生态质量。中国现行的常规理化监测指标(如COD、氨氮、BOD5)很难满足水环境管理的需求,难以全面准确地反映水环境质量变化的趋势。因此,在借鉴欧美发达国家流域水生态完整性评价方法的基础上,结合中国目前监测现状以及流域水环境管理需求,构建了包括物理生境指标、理化指标、水生生物指标在内的流域水生态完整性监测与评价方法,以期为中国流域水质目标管理技术体系的业务化运行提供可资借鉴的技术支撑,实现从单一的化学指标监测转向综合的水生态系统监测,实现流域水生态完整性的监测与评价。  相似文献   
17.
高锰酸钾降解地下水中PCE的研究   总被引:2,自引:1,他引:1  
田璐  杨琦  尚海涛 《环境工程学报》2009,3(8):1355-1359
以氯代有机污染物中常见的PCE为目标污染物,以自制高锰酸钾溶液为氧化剂,采用批实验方法,探讨了高锰酸钾降解PCE的反应动力学、影响因素以及反应机理。反应结果表明,高锰酸钾降解PCE的反应符合一级动力学方程,反应活化能E为57.119 kJ/mol,在30℃条件下,反应速率常数为0.0076 min-1,半衰期为91.20 min。在pH在3~10,离子强度在0~0.1030 mol/L之间变化时,反应速率不受明显影响。  相似文献   
18.
铁屑粉煤灰组合处理含磷废水   总被引:1,自引:0,他引:1  
实验研究了铁屑粉煤灰组合处理含磷废水的除磷效果.通过单因素实验,考查了铁屑粉煤灰质量比、反应时间、pH值和投加量对除磷效果的影响.实验结果表明,该法除磷的最优条件为铁屑和粉煤灰的质量比为2∶1,反应时间为20 min,pH值为6,投加量为20 g/L.在最优实验条件下磷的去除率达到了97.5%.对比了该法和粉煤灰吸附法与传统铁屑法的除磷效果.与单一粉煤灰吸附法和传统铁屑法除磷的结果相比较,铁屑粉煤灰组合除磷的方法具有明显优势.  相似文献   
19.
煤化工含盐废水的自然蒸发工艺是浓缩高盐废水无害化处理的重要方法之一。与淡水的蒸发不同,含盐废水的蒸发不仅受气温、湿度、风速等外部因素的影响,也受到废水溶解物质及其离子、分子间相互作用等内部因素的影响,但逐个考察影响含盐废水蒸发速率的各个因素与蒸发速率的关系比较困难。通过煤化工不同浓度含盐废水的蒸发试验,找出了含盐废水相对蒸发速率与TDS、密度及盐度之间的关系,对煤化工行业蒸发池的运行管理具有一定的参考价值。  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号