排序方式: 共有304条查询结果,搜索用时 0 毫秒
41.
高分子量多环芳烃(high molecular weight polycyclic aromatic hydrocarbons,HMW-PAHs)属于持久性污染物,与低分子量多环芳烃(low molecular weight polycyclic aromatic hydrocarbons,LMW-PAHs)相比更难被降解.微生物修复是解决HMW-PAHs污染问题的有效手段.该文以2种典型HMW-PAHs——芘和苯并[a]芘为例,对影响其微生物降解效率的因素、提高降解率的强化手段和主要降解途径进行阐释,深入剖析微生物的降解调控机制,并对未来的研究和发展提出了展望,以期为微生物降解HMW-PAHs的相关研究提供参考.结果表明:①大多数微生物在中温、中性条件下对HMW-PAHs具有较好的降解性能,不同多环芳烃在降解过程中存在相互作用;②就HMW-PAHs的微生物强化降解手段而言,表面活性剂吐温80对降解的促进作用较为明显,生物炭是较为优良的固定化材料,在受体菌株中表达降解基因以构建基因工程菌是促进HMW-PAHs微生物降解的有效方式;③芘和苯并[a]芘主要通过K区氧化和LMW-PAHs途径降解;④由双加氧酶催化的羟基化是HMW-PAHs降解过程中的重要步骤;⑤多环芳烃的初始氧化过程也涉及细胞色素P450单加氧酶的活性.目前,基因工程菌的长效稳定性是限制相关技术广泛应用的瓶颈问题,未来需要综合多组学数据从基因、转录、蛋白和代谢水平对HMW-PAHs的微生物降解机制进行全面、深入地解析,为构建高效稳定的重组菌株提供理论支撑. 相似文献
42.
为了解西安城区大气中多氯联苯(Polychlorinated biphenyls,PCBs)的浓度水平、季节变化特征及来源,于2012年夏季、冬季分别对西安市城区大气进行每周1次的主动采样,共获得22对大气样品(气态和颗粒态).结果表明,西安城区大气中∑64PCBs的浓度为76.21~338.77pg·m-3,平均浓度为183.85 pg·m-3,且主要存在于气态样品中.组成上主要以低氯代PCBs为主,其中,三氯和四氯代PCBs占总浓度的59.64%~91.39%.气态样品中,夏季、冬季PCBs的平均浓度分别为201.68、151.11 pg·m-3;颗粒态样品中,冬季PCBs平均浓度是夏季的6.65倍.通过主成分分析法对西安城区大气中PCBs的来源进行解析,发现主成分1的方差贡献率为36.06%,主要为来自我国生产的变压器油源;主成分2的方差贡献率为20.29%,可能来自于油漆的使用. 相似文献
43.
44.
针对传统垃圾收运路线成本高昂、对人居环境与自然生态造成不可逆负面影响的问题,提出了一种基于GIS技术与改进蚁群算法的垃圾收运路径规划方法。采用CRITIC法、熵权TOPSIS法及改进的蚁群算法,以时间成本及环境成本作为优化目标,实现从垃圾收集点到最终处理厂的最优路径规划设计,从而有效降低垃圾收运成本与收运对周边生态环境的危害。结果表明,将道路交通对周边人群健康、生态环境质量的影响纳入对道路交通的综合成本评价当中,运输路径对土地保护需求强烈区域、影响人口规模偏大区域、降噪物密度偏小区域、生态不可分割度偏大区域的穿行率分别降低了41%、44%、29%、41%,有效降低了垃圾收运路径对生态敏感区域的干扰程度。本研究结果可为GIS 技术与蚁群算法在垃圾车收运路径规划中的应用提供参考。 相似文献
45.
以垃圾渗滤液MBR出水为研究对象,采用臭氧-活性炭组合工艺对其进行深度处理。相比单一臭氧处理和单一活性炭吸附,臭氧-活性炭组合工艺能提高COD及NH3-N的去除率,并且显示出良好的协同作用。实验中利用三维荧光光谱和凝胶色谱对水质进行分析,同时考察了活性炭种类及预处理方式、活性炭用量、pH及臭氧浓度对COD及NH3-N去除率的影响。结果表明:pH=4.54、臭氧浓度为1.34 mg·min-1、活性炭投加量为10 g·L-1、臭氧处理时间为30 min、活性炭吸附时间为180 min,当垃圾渗滤液MBR出水COD为1 550 mg·L-1,NH3-N为75 mg·L-1时,经处理后,COD浓度为93 mg·L-1,NH3-N浓度为12 mg·L-1,COD的去除率达到94%,NH3-N的去除率达到84%,实现了垃圾渗滤液MBR出水的达标排放。pH对污染物的去除有较为明显的影响,高pH有利于NH3-N的去除,但是过高的pH不利于COD的去除。同时,提高臭氧和活性炭的投加量能明显提高COD及NH3-N的去除率。 相似文献
46.
碳源对微生物异养硝化至关重要,为了探究碳源对耐低温异养硝化菌-哈尔滨不动杆菌HITLi 7~T低温生长和氨氮代谢的影响,考察了乙酸钠、碳酸钠、淀粉、柠檬酸钠、蔗糖、葡萄糖、甘油、糊精、乳糖和麦芽糖10种碳源.结果表明,碳源种类对HITLi 7~T低温生长速率和胞外分泌物含量影响较大.乙酸钠是HITLi 7~T的最优碳源,低温下培养4 d后OD_(600)能提高到0.146,产生的ATP也明显高于其他组,为5.124μmol·mg~(-1)·prot~(-1);此时,总胞外分泌物量最多,为3.86 mg·L~(-1),多糖占比也最高为41.7%;4 d氨氮平均降解速率最大,为0.042 mg·L~(-1)·h~(-1);其次为葡萄糖和碳酸钠.同时考察了不同碳氮比的影响,结果表明HITLi 7~T以乙酸钠为碳源时,最佳C/N比为8,此时氨氮去除速率最高为0.216 mg·L~(-1)·h~(-1),总EPS量为7.04 mg·L~(-1),其中多糖占比为55.3%. 相似文献
47.
针对现有制革废水处理工艺难以使氨氮达标排放的问题,引入多段A/O工艺(MAOP)作为制革废水二级生物处理单元,探讨分段进水、水力停留时间(HRT)以及污泥回流比(R)对其COD和氨氮同步去除的影响.结果证明,无论是否分段进水,四段MAOP对制革废水一级生化出水均有良好的COD去除效果,当污泥停留时间(SRT)为18d、HRT不小于24h时,其出水浓度都可保持在300mg/L以下,满足GB8978-1996二级排放标准.在各段进水比为4:3:2:1、R 100%、HRT 48h、SRT 18d条件下,MAOP对制革废水一级生化出水的氨氮去除率高达97.7%,出水浓度3.6mg/L左右,达到GB8978-1996一级排放标准.MAOP同时具备反硝化、短程硝化反硝化、同步硝化反硝化等多种脱氮机制,是一种颇具前景的制革废水生物脱氮技术. 相似文献
48.
根据太湖地区1/4°×1/6°经纬度网格的地表特征及α-HCH施用量,建立了一个基于同精度网格系统, 包含迁移和传输2个模块的质量平衡模型. 迁移模块使用逸度方法描述α-HCH在每一个网格的多介质环境中的迁移过程,传输模块使用拉格朗日方法描述α-HCH在不同网格间的大气平流和水体径流. 模型模拟了α-HCH在研究区域开始施用至今(1952~2007年) α-HCH在5类4层土壤、气、水和底泥23个环境相中的积累、迁移和残留情况. 模拟值与实测α-HCH浓度对比验证表明两者吻合得很好. 环境温度是影响α-HCH在各环境介质中浓度的最重要因素. 模拟结果表明,在α-HCH使用时期,在土壤中的年积累趋势约为年使用量趋势的5.7%; 在停止使用后,其减少趋势为积累趋势的50%. 在α-HCH使用期间,太湖流域α-HCH的年使用量与其水-气界面沉积通量存在显著的相关性,而与土-气界面通量则无显著相关性. α-HCH停止使用后,太湖流域水-气界面通量表现为向大气的挥发,且自1985年其年挥发通量大于土-气挥发通量. 底泥是α-HCH水-气界面挥发的主要补给源. 2007年太湖流域内α-HCH大气浓度普遍高于流域外大气浓度. 整个模拟时段α-HCH的主要输出途径是流出太湖地区,且以大气平流为主;其次的减少途径是在环境介质中的降解,其中土壤降解量占绝大部分. 2007年环境中残留的α-HCH为总使用量的0.005%,以土壤残留量为主,其次是底泥. 相似文献
49.
50.
通风速率对烟草废料堆肥腐熟及元素变化影响 总被引:2,自引:0,他引:2
以烟草废料为原料堆肥,设置不同的通风速率,通过对堆肥中温度、营养元素和腐殖质等指标变化的研究,揭示了通风速率对堆肥腐熟和主要元素变化的影响。结果表明,通风速率为0.1和0.2 m3/(h·m3)的处理的高温期持续时间在5 d以上,满足堆肥无害化卫生标准要求,堆肥积温以0.2 m3/(h·m3)的处理最高;堆肥结束时,通风速率为0.2和0.3 m3/(h·m3)处理的总碳含量降低率、总氮含量增加率及NO3--N含量增幅均强于0.1 和0.4 m3/(h·m3)的通风处理,且两处理的NH4+-N含量至堆肥结束时降至400 mg/kg阈值以下;通风速率为0.2 m3/(h·m3)的处理的终产品的腐殖化质数为1.91,达到腐熟阈值1.90。综合以上结果表明,0.2 m3/(h·m3)的通风速率较适于烟草废料堆肥腐熟和营养转化。 相似文献