首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   13篇
  国内免费   26篇
环保管理   2篇
综合类   46篇
基础理论   21篇
  2024年   1篇
  2023年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   12篇
  2008年   14篇
  2007年   3篇
  2006年   1篇
排序方式: 共有69条查询结果,搜索用时 328 毫秒
41.
污泥处理处置过程中的碳排放是污水厂温室气体的重要来源。该研究以IPCC及UNFCCC发布的碳排放计算方法为基础,以我国典型污泥处理处置工艺为例,计算不同工艺碳排放过程。研究表明,污泥的处理处置过程具有显著的碳减排潜力,实施厌氧消化、降低干化污泥的含水率与提高余热利用效率是污水厂削减碳排放的有效途径。  相似文献   
42.
采集崇明岛典型河岸带不同区域土壤剖面样品,测定了河岸带土壤溶解性有机碳(dissolved organic carbon,DOC)和溶解有机质(dissolved organic matter,DOM)的荧光光谱,通过平行因子分析分析了河岸带土壤溶解有机质组成和垂直分布特征,探讨了土壤中p H和盐度对河岸带土壤有机质分布的影响,为溶解性有机质的迁移提供依据。结果表明:土壤DOC从表层到底层呈现逐步减少的趋势,表层土壤DOC从陆上区向缓冲区有累积效果,而河岸带的破坏使得这种累积效果消失。土壤DOM分布特征与DOC分布基本一致,其中类腐殖质组分占总量的90%左右,类蛋白质占10%左右,表层土壤(0~30 cm)类腐殖质物质含量明显高于底层土壤(40~60 cm)含量(P0.01),类蛋白质物质随土壤剖面垂直深度变化不明显。土壤DOM含量随p H升高而减少;在低盐度范围内,土壤类蛋白组分随盐度的升高而增加,类腐殖质组分不受盐度影响。  相似文献   
43.
化妆品生产行业作为"美丽经济"的重要组成部分,其生产过程产生的废水具有浓度高、难降解、含有有毒有害物质等特点,须进行有效处理才能消除其对环境的负面影响。本文从清洁生产的角度出发,讨论化妆品生产废水的污染防治途径,强调在做好源头控制的基础上,采用高效的末端处理技术,更好地实现资源利用和污染防治的目的,为化妆品行业的污染控制提供参考。  相似文献   
44.
温室气体N2O含量的增加对气候变化产生显著影响,针对污水处理行业N2O减排控制的发展趋势与需求,以典型污水生物处理工艺为对象,对N2O产生机理、释放特征和核算、影响因素进行了综述和分析.研究表明,污水处理厂N2O的释放主要来自生物脱氮过程的硝化阶段和反硝化阶段,不同污水处理厂的N2O释放因子和释放特征不同.DO、温度和C/N是影响N2O释放的主要因素,最后从污水处理厂工艺运行和水质调控角度提出了具有可操作性的N2O减排途径与方法.  相似文献   
45.
30种离子液体对青海弧菌Q67的毒性效应   总被引:6,自引:1,他引:5  
应用微板毒性分析法系统地考察了30种具有不同烷基链长度、阴离子基团和阳离子骨架(甲基咪唑、二甲基咪唑和吡啶)的“绿色溶剂”离子液体(ionic liquids,ILs)对一种新型淡水发光菌青海弧菌Q67 (Vibrio qinghaiensis sp. Q67)的毒性效应.非线性拟合结果表明,Logit或Weibull函数可有效地表征30种ILs的剂量-效应曲线,其相关系数R>0.98,均方根误差RMSE<0.053;30种ILs对Q67的毒性差异很大,pEC50值在1.01~5.48之间;ILs对Q67的毒性具有烷基链效应,且烷基链上每增加2个碳原子,其pEC50值增加近1倍;ILs的阴离子基团、阳离子骨架及ILs本身的吸光性不显著影响ILs对发光菌Q67的毒性.  相似文献   
46.
 应用微板毒性分析方法,以污染物对淡水发光菌——青海弧菌(Vibrio-qinghaiensis sp.)Q67 的发光抑制为毒性指标,分别测定了对氯苯酚(P1)、邻氯苯酚(P2)、2,4-二氯苯酚(P3)、间甲苯酚(P4)、对甲苯酚(P5)、间硝基苯酚(P6)、2-硝基苯酚(P7)、对甲苯胺(P8)、P9、邻硝基苯胺(P10)、邻氯苯胺(P11)、间氯苯胺(P12)对Q67 的毒性. 结果表明, 12 种污染物的剂量-效应关系除了P11 可用Logit 模型描述外,其余11 种污染物均可用Weibull 模型有效描述. 由模型估算的半数效应浓度负对数值(pEC50) 分别为3.43,2.81,3.66,2.83,2.99,3.15,3.20,2.52,2.36,3.66,2.81,2.89,其对Q67 的毒性大小顺序为 (P3 = P10) > P1 > P7 > P6 > P5 > P12 > P4 > (P11 = P2) > P8 > P9. 分别设计浓度为各自EC10 和EC50 的2 个等效应浓度比混合物和12 个均匀设计浓度比混合物进行微板毒性实验,并应用剂量加和(DA)模型与独立作用(IA)模型建立由单一毒物的剂量-效应参数来预测混合物联合毒性的方法. 结果表明,在实验浓度范围内各混合物毒性均能用DA模型精确预测.  相似文献   
47.
黄浦江上游水源保护区水质评价与分析   总被引:2,自引:0,他引:2  
黄浦江上游保护区是上海环境保护工作的重点,其水质状况直接影响上海的饮水安全,分析影响该区域水质的主要水质因子。研究水质的分布特点和近年(2000年-2004年)的发展变化趋势,本文使用因子分析法通过对2000年-2004年黄浦江上游水源保护区的常设监测断面水质进行了分析,得出了黄浦江上游水质保护区的特征污染因子,再使用幂指数法、加权平均法、向量模法等水质综合评价方法对该区域的水质进行了评价,并得到了该区域的水质分布特点。  相似文献   
48.
离子液体与有机磷农药间的毒性相互作用   总被引:3,自引:0,他引:3  
"绿色"溶剂离子液体(ILs)与其他污染物之间的毒性相互作用已有报道,但相关数据仍较为缺乏。以7种具有不同阴阳离子组成的ILs:溴化丁基吡啶(IL1)、氯化丁基-2,3-二甲基咪唑(IL2)、丁基-3-甲基咪唑翁磷酸盐(IL3)、丁基-3-甲基咪唑正辛基硫酸(IL4)、丁基-2,3-二甲基咪唑二乙二醇单甲醚硫酸盐(IL5)、辛基-3-甲基咪唑二乙基醚单甲磺硫酸(IL6)和氯化己基-3-甲基咪唑(IL7),与5种有机磷农药(OPs):敌敌畏(DIC)、乐果(DIM)、草甘膦(GLY)、久效磷(MON)和磷胺(PHO),作为混合物组分,以等效应浓度比射线法设计7种ILs分别与5种OPs等EC_(50)配比的35组二元混合物,应用微板毒性分析法(MTA)测定这些混合物对青海弧菌Q67的毒性,以浓度加和(CA)和独立作用(IA)为参考模型分析毒性相互作用。结果表明,不同的IL-OP混合物呈现的作用类型不同:如IL1-DIM、IL2-DIM、IL3-DIM、IL6-DIM、IL2-MON和IL7-DIM的混合物呈明显的拮抗作用;IL3-DIC和IL2-GLY的混合物呈明显的协同作用;IL5-DIM和IL4-MON的混合物在较高浓度区呈拮抗作用;而IL3-GLY和IL6-DIC的混合物在较高浓度区呈协同作用;其余的混合物则为加和作用。  相似文献   
49.
黄慧  牛冬杰 《中国环境科学》2012,32(10):1906-1913
运用EASEWASTE对污泥与矿化垃圾混合填埋并用泥土作为覆盖材料的系统进行了生命周期分析.结果表明,污泥填埋的环境影响主要表现为存储的生态毒性(水)、温室效应和持久性生态毒性(土壤).其最大的污染因子分别为Cu、CH4和As.相比于前处理单元和运输单元,污泥填埋单元的环境影响最大,应尽可能加以控制.敏感性分析表明,降低渗滤液的产生量、提高填埋气的收集率以及把收集到的填埋气进行产热发电等综合利用都能有效的降低系统对环境的污染.应加强对填埋阶段的污染控制,改进填埋场的填埋气收集处理技术,规范日覆盖等填埋操作过程,加强渗滤液的收集和处理,最大程度的减小环境污染.  相似文献   
50.
3种离子液体与甲霜灵二元混合物的联合毒性   总被引:1,自引:0,他引:1       下载免费PDF全文
选择3种咪唑类离子液体(ILs): C10H19ClN2 (IL1), C12H23ClN2 (IL2), C16H31ClN2 (IL3)和一种杀菌剂甲霜灵(MET)为混合物组分,以直接均分射线法构建3组二元混合物体系:MET-IL1, MET-IL2和MET-IL3. 应用微板毒性分析法(MTA)测定二元混合物对青海弧菌Q67 (Vibrio qinghaiensis sp.–Q67)的联合毒性.通过比较实验毒性数据与浓度加和(CA)参考模型分析混合物的毒性相互作用,并利用半数效应浓度(EC50)水平下的等效线图分析毒性变化规律.结果表明3组二元混合物的相互作用明显不同.在MET-IL1和MET-IL2 2组二元体系中,MET浓度比例越高,拮抗作用越明显;在MET-IL3二元体系中,随着MET浓度比例的减小,MET与IL3的相互作用由加和变为协同,并且MET比例越小,协同作用越明显.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号