首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   3篇
安全科学   81篇
综合类   6篇
基础理论   2篇
灾害及防治   18篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   9篇
  2015年   17篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   1篇
  2007年   8篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1984年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
11.
Objective: The lower extremity of the occupant represents the most frequently injured body region in motor vehicle crashes. Knee airbags (KABs) have been implemented as a potential countermeasure to reduce lower extremity injuries. Despite the increasing prevalence of KABs in vehicles, the biomechanical interaction of the human lower extremity with the KAB has not been well characterized. This study uses computational models of the human body and KABs to explore how KAB design may influence the impact response of the occupant's lower extremities.

Methods: The analysis was conducted using a 50th percentile male occupant human body model with deployed KABs in a simplified vehicle interior. The 2 common KAB design types, bottom-deploy KAB (BKAB) and rear-deploy KAB (RKAB), were both included. A state-of-the-art airbag modeling technique, the corpuscular particle method, was adopted to represent the deployment dynamics of the unfolding airbags. Validation of the environment model was performed based on previously reported test results. The kinematic responses of the occupant lower extremities were compared under both KAB designs, 2 seating configurations (in-position and out-of-position), and 3 loading conditions (static, frontal, and oblique impacts). A linear statistical model was used to assess factor significance considering the impact responses of the occupant lower extremities.

Results: The presence of a KAB had a significant influence on the lower extremity kinematics compared to no KAB (P <.05) by providing early restraint and distributing contact force on the legs during airbag deployment. For in-position occupants, the KAB generally tended to decrease tibia loadings. The RKAB led to greater lateral motion of the legs compared to the BKAB, resulting in higher lateral displacement at the knee joint and abduction angle change (51.2 ± 21.7 mm and 15° ± 6.0°) over the dynamic loading conditions. Change in the seating position led to a significant difference in occupant kinematic and kinetic parameters (P <.05). For the out-of-position (forward-seated) occupant, the earlier contact between the lower extremity and the deploying KAB resulted in 28.4° ± 5.8° greater abduction, regardless of crash scenarios. Both KAB types reduced the axial force in the femur relative to no KAB. Overall, the out-of-position occupant sustained a raised axial force and bending moment of the tibia by 0.8 ± 0.2 kN and 21.1 ± 8.7 Nm regardless of restraint use.

Conclusions: The current study provided a preliminary computational examination on KAB designs based on a limited set of configurations in an idealized vehicle interior. Results suggested that the BKAB tended to provide more coverage and less leg abduction compared to the RKAB in oblique impact and/or the selected out-of-position scenario. An out-of-position occupant was associated with larger abduction and lower extremity loads over all occupant configurations. Further investigations are recommended to obtain a full understanding of the KAB performance in a more realistic vehicle environment.  相似文献   

12.
Objective: A large portion of child restraint systems (car seats) are installed incorrectly, especially when first-time parents install infant car seats. Expert instruction greatly improves the accuracy of car seat installation but is labor intensive and difficult to obtain for many parents. This study was designed to evaluate the efficacy of 3 ways of communicating instructions for proper car seat installation: phone conversation; HelpLightning, a mobile application (app) that offers virtual interactive presence permitting both verbal and interactive (telestration) visual communication; and the manufacturer's user manual.

Methods: A sample of 39 young adults of child-bearing age who had no previous experience installing car seats were recruited and randomly assigned to install an infant car seat using guidance from one of those 3 communication sources.

Results: Both the phone and interactive app were more effective means to facilitate accurate car seat installation compared to the user manual. There was a trend for the app to offer superior communication compared to the phone, but that difference was not significant in most assessments. The phone and app groups also installed the car seat more efficiently and perceived the communication to be more effective and their installation to be more accurate than those in the user manual group.

Conclusions: Interactive communication may help parents install car seats more accurately than using the manufacturer's manual alone. This was an initial study with a modestly sized sample; if results are replicated in future research, there may be reason to consider centralized “call centers” that provide verbal and/or interactive visual instruction from remote locations to parents installing car seats, paralleling the model of centralized Poison Control centers in the United States.  相似文献   

13.
14.
Purpose: This study collected and analyzed available testing of motor vehicle seat strength in rearward loading by a body block simulating the torso of an occupant. The data were grouped by single recliner, dual recliner, and all belts to seat (ABTS) seats.

Methods: The strength of seats to rearward loading has been evaluated with body block testing from 1964 to 2008. The database of available tests includes 217 single recliner, 65 dual recliner, and 18 ABTS seats. The trends in seat strength were determined by linear regression and differences between seat types were evaluated by Student's t-test. The average peak moment and force supported by the seat was determined by decade of vehicle model year (MY).

Results: Single recliner seats were used in motor vehicles in the 1960s to 1970s. The average strength was 918 ± 224 Nm (n = 26) in the 1960s and 1,069 ± 293 Nm (n = 65) in the 1980s. There has been a gradual increase in strength over time. Dual recliner seats started to phase into vehicles in the late 1980s. By the 2000s, the average strength of single recliner seats increased to 1,501 ± 335 Nm (n = 14) and dual recliner seats to 2,302 ± 699 Nm (n = 26). Dual recliner seats are significantly stronger than single recliner seats for each decade of comparison (P < .001). The average strength of ABTS seats was 4,395 ± 1,185 in-lb for 1989–2004 MY seats (n = 18). ABTS seats are significantly stronger than single or dual recliner seats (P < .001). The trend in ABTS strength is decreasing with time and converging toward that of dual recliner seats.

Conclusions: Body block testing is an quantitative means of evaluating the strength of seats for occupant loading in rear impacts. There has been an increase in conventional seat strength over the past 50 years. By the 2000s, most seats are 1,700–3,400 Nm moment strength. However, the safety of a seat is more complex than its strength and depends on many other factors.  相似文献   

15.
本文主要介绍加拿大新的《机动车辆约束系统和加高座椅安全法规》(SOR/2011-16)的相关内容,同时对儿童汽车座椅的研究与测试方法也进行了详细描述,以对我国相关行业提供借鉴。  相似文献   
16.
为满足目前公共场所安全容量定额管理需求,提出了基于风险分析的公共场所人员安全容量确定方法,具体分析了该方法的实现流程。首先从影响公共场所人员容量的风险源出发,分析活动类型、场所类型、参加人员和灾害事故这4个方面的人群风险源影响,而后从运动阈值、心理阈值、心理阈值和服务资源阈值4个承受力角度重点阐述了运动安全容量、生理安全容量、生理安全容量和服务安全容量。通过风险分析方法得到的安全容量,考虑了公共场所的风险特点,并且这个安全容量将随着风险因素的变化而不同。这个方法可用于指导公共场所人员安全容量定额管理。  相似文献   
17.
Child protection is an area of police work which has expanded in the last decade, leading to an increase in the number of police officers working in departments which specialise in investigating cases of child abuse. Police officers in this field may be at greater risk of experiencing secondary traumatic stress but there remains a paucity of research in this area of policing. Analogies can be drawn to existing research in policing and with social service workers involved in child protection. The paper finishes off with implications for police forces to ensure safe working environments and appropriate counselling for employees.  相似文献   
18.
Objective: A 3-phase real-world motor vehicle crash (MVC) reconstruction method was developed to analyze injury variability as a function of precrash occupant position for 2 full-frontal Crash Injury Research and Engineering Network (CIREN) cases.

Method: Phase I: A finite element (FE) simplified vehicle model (SVM) was developed and tuned to mimic the frontal crash characteristics of the CIREN case vehicle (Camry or Cobalt) using frontal New Car Assessment Program (NCAP) crash test data. Phase II: The Toyota HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations per case within the SVM. Five occupant positioning variables were varied using a Latin hypercube design of experiments: seat track position, seat back angle, D-ring height, steering column angle, and steering column telescoping position. An additional baseline simulation was performed that aimed to match the precrash occupant position documented in CIREN for each case. Phase III: FE simulations were then performed using kinematic boundary conditions from each vehicle's event data recorder (EDR). HIC15, combined thoracic index (CTI), femur forces, and strain-based injury metrics in the lung and lumbar vertebrae were evaluated to predict injury.

Results: Tuning the SVM to specific vehicle models resulted in close matches between simulated and test injury metric data, allowing the tuned SVM to be used in each case reconstruction with EDR-derived boundary conditions. Simulations with the most rearward seats and reclined seat backs had the greatest HIC15, head injury risk, CTI, and chest injury risk. Calculated injury risks for the head, chest, and femur closely correlated to the CIREN occupant injury patterns. CTI in the Camry case yielded a 54% probability of Abbreviated Injury Scale (AIS) 2+ chest injury in the baseline case simulation and ranged from 34 to 88% (mean = 61%) risk in the least and most dangerous occupant positions. The greater than 50% probability was consistent with the case occupant's AIS 2 hemomediastinum. Stress-based metrics were used to predict injury to the lower leg of the Camry case occupant. The regional-level injury metrics evaluated for the Cobalt case occupant indicated a low risk of injury; however, strain-based injury metrics better predicted pulmonary contusion. Approximately 49% of the Cobalt occupant's left lung was contused, though the baseline simulation predicted 40.5% of the lung to be injured.

Conclusions: A method to compute injury metrics and risks as functions of precrash occupant position was developed and applied to 2 CIREN MVC FE reconstructions. The reconstruction process allows for quantification of the sensitivity and uncertainty of the injury risk predictions based on occupant position to further understand important factors that lead to more severe MVC injuries.  相似文献   
19.
Objective: This article discusses differences between a side impact procedure described in United Nations/Economic Commission for Europe (UN/ECE) Regulation 129 and scenarios observed in real-world cases.

Methods: Numerical simulations of side impact tests utilizing different boundary conditions are used to compare the severity of the Regulation 129 test and the other tests with different kinematics of child restraint systems (CRSs). In the simulations, the authors use a validated finite element (FE) model of real-world CRSs together with a fully deformable numerical model of the Q3 anthropomorphic test device (ATD) by Humanetics Innovative Solution, Inc.

Results: The comparison of 5 selected cases is based on the head injury criterion (HIC) index. Numerical investigations reveal that the presence of oblique velocity components or the way in which the CRS is mounted to the test bench seat fixture is among the significant factors influencing ATD kinematics. The results of analyses show that the side impact test procedure is very sensitive to these parameters. A side impact setup defined in Regulation 129 may minimize the effects of the impact.

Conclusions: It is demonstrated that an artificial anchorage in the Regulation 129 test does not account for a rotation of the CRS, which should appear in the case of a realistic anchorage. Therefore, the adopted procedure generates the smallest HIC value, which is at the level of the far-side impact scenario where there are no obstacles. It is also shown that the presence of nonlateral acceleration components challenges the quality of a CRS and its headrest much more than a pure lateral setup.  相似文献   

20.
Based on 2890 prenatal diagnoses from 12 European countries the risk for a chromosomally abnormal fetus at amniocentesis after the birth of a child with a chromosome abnormality has been estimated to be 1.3 per cent when the mother's age is 34 years or less at amniocentesis and 1.8 per cent if the mother is older. This risk does not depend on paternal age, and it is independent of the type of the chromosome abnormality of the index child. Some geographical heterogeneities were detected. Therefore, the overall risk has to be considered as a rough estimate. The chromosome constitution of the abnormal fetus differed from that of the index patient in 21 of 41 cases. Several explanations for the higher risk have been discussed. If the index child had trisomy 18, 13 or a sex chromosome abnormality, the fetus tended to be a female. If the index child was a trisomy 21, the fetal sex ratio was normal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号