首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   1篇
  国内免费   40篇
安全科学   9篇
废物处理   12篇
环保管理   41篇
综合类   78篇
基础理论   33篇
污染及防治   52篇
评价与监测   4篇
社会与环境   3篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   8篇
  2018年   10篇
  2017年   6篇
  2016年   8篇
  2015年   18篇
  2014年   8篇
  2013年   16篇
  2012年   14篇
  2011年   29篇
  2010年   12篇
  2009年   17篇
  2008年   12篇
  2007年   10篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
91.
The main results of research work carried out since 1998 with regard to the application of hydro-acoustic technologies for the evaluation of biomass and distribution of small pelagic fish species off the southern coast of Sicily are presented, taking into account information from hydrology and from ecology of the fish populations targeted. The biomass estimates and the population-density charts presented concern the two main species, i.e. sardine Sardina pilchardus (Walbaum, 1792) and anchovy Engraulis encrasicolus (Linnaeus, 1758). Both the sardine and anchovy populations experienced large inter-annual fluctuations, with biomass estimates ranging from 6000 to over 36,000 tonnes (t) (sardine) and from about 7000 to 23,000 t (anchovy). Acoustic estimates are largely consistent with landings recorded in Sciacca (the main fishing port for small pelagic species in the study area) during the year following the evaluation surveys. In addition, trends in sardine and anchovy biomass estimates appears to be negatively correlated with the mean sea surface temperature calculated over the time intervals January-September (sardine) and June-November (anchovy) of the preceding year, which correspond to larval and juvenile growth periods of target species. Observed patterns would suggest the importance of enrichment processes relevant to the survival of early stages, so determining recruitment success and finally higher population sizes.  相似文献   
92.
Global energy demand is expected to increase from the current 400 ExaJ per year to as much as 700–1,000 ExaJ per year by the middle of this century. If fossil carbon resources continue to make up the bulk of the energy supply, not only will atmospheric carbon dioxide increase to levels not seen for the past 30–35 million years, but depleting fossil carbon resources will become increasingly less available for other purposes, particularly the production of chemicals on which society now depends. The chemical process industries are heavily dependent on the availability of low-price petroleum as a feedstock. Recent life-cycle analyses suggest that pursuing both strategies of renewable energy sources and renewable feedstocks (i.e. biomass) will be required to meet these competing demands. Reducing the global use of both energy and manufactured chemicals will be a challenge for sustainable development. Education of the next generation of chemists and chemical engineers will have to change significantly from its current emphasis on petrochemical-based manufacturing to include a much greater emphasis on renewable resources and bio-based processes.Brief accounts of this work were presented at the 7th International Symposium on Green Chemistry in China (Zhuhai, People’s Republic of China, May 2005) and at the Joint US–China Green Chemistry Workshop (Beijing, People’s Republic of China, May 2005; this workshop was supported by US National Science Foundation grant CHE-0522369).  相似文献   
93.
2006年8月10日-8月21日,分别对扎龙湿地内的植被种类和植被类型进行调查,并在植被调查的基础上划分4处样地共20个样方调查野生芦苇群落的生物量。结果表明,火烧因子与缺水干旱因子对湿地内草本植物的生境、种类、植株数量、植被类型、单位面积生物量和株高影响明显。植被生境明显恶化,植被种类减少、植株数量下降、类型单一化,野生芦苇群落单位面积生物量降低。  相似文献   
94.
匡星  白明洲  杨成永 《环境保护科学》2010,36(3):99-101,114
随着公路铁路等交通项目的建设,其面临的生态环境压力日益增大,周边地区生物量发生很大变化。本文针对交通建设活动对生物量的影响问题,研究提出一种基于土地利用类型变化的交通建设项目前后生物量变化的评价指标和评价标准,并采用京沪铁路电气化北京-济南段实际工程建设进行实例应用。  相似文献   
95.
Metals can be stabilized into cement matrix by solidification/stabilization process. Rice hull is an agricultural residue containing about 10-20% (weight) of silica. It can be used to synthesize β-Ca2SiO4, an important component of Portland cement. Furthermore it is possible to prepare β-Ca2SiO4 doped with heavy metals. Here we describe the synthesis of β-Ca2SiO4 doped with zinc and the behavior of mortars prepared using this material. Products were analyzed by X-ray diffraction, differential thermal analysis and scanning electron microscopy coupled to energy-dispersive spectroscopy. The maximum amount of zinc that can be inserted into β-Ca2SiO4, without affecting the crystalline structure, is limited to 2% (molar basis). In comparison with conventional mortars, zinc-modified mortars show a similar behavior, regarding porosity, resistance to acidic attack and compressive strength. The synthesis of β-Ca2SiO4 doped with zinc presents a new possibility for safety enhancement in solidification/stabilization processes.  相似文献   
96.
采用"复合过滤法"处理生物质焦油废水,通过分析生物质焦油废水水质特点,筛选出滤料的种类、确定滤料的配置比,并经实验对比分析。结果表明,经复合过滤法处理后的焦油废水COD、焦油、SS的去除率分别达到54%、60%、68%。该技术工艺简单,运行成本低,管理方便,可广泛用于农村生物质气化站的焦油废水处理。  相似文献   
97.
ABSTRACT

The biogas constituting majorly CH4 and CO2 has been produced by Ca(OH)2 pre-treated wheat straw with pre-digested cow dung. Some of the key thermodynamic parameters like specific heat capacity, density and heating capacity of the biogas produced have also been calculated per day as well as throughout the hydraulic retention time. The governing equations of biogas with appropriate phase and interfacial conditions describing the physics of the biogas have been derived. The control volume approach has been used to predict the total volume (ml) of biogas, CH4 and CO2 throughout the experiment and on the daily basis. The effects of feedstock, temperature and pressure on the production of biogas, CH4 and CO2 in anaerobic digestion have also been studied. The average number of molar fraction and conversion ratio of CH4 and CO2 are correlated with number of carbon atoms available in feedstock. Numerical calculations by using developed model and Modified Gompertz model have shown proficient agreement with the experimental observations.  相似文献   
98.
•Harbin showed relatively high threshold RH (80%) for apparent increase of SOR. •The observed SOR were at the lower end of the ratios from Beijing’s winter. •Temperature-dependent increase of NOR was sharper than that of SOR. • NOR increased with stronger biomass burning impact but SOR was largely unchanged. Formation of secondary inorganic aerosol (SIA) was investigated during a six-month long heating season in Harbin, China. Enhanced sulfate formation was observed at high relative humidity (RH), with the same threshold RH (80%) for both colder and warmer measurement periods. Compared to wintertime results from Beijing, the threshold RH was considerably higher in Harbin, whereas the RH-dependent enhancement of sulfur oxidation ratio (SOR) was less significant. In addition, the high RH events were rarely encountered, and for other periods, the SOR were typically as low as ~0.1. Therefore, the sulfate formation was considered inefficient in this study. After excluding the several cases with high RH, both SOR and the nitrogen oxidation ratio (NOR) exhibited increasing trends as the temperature increased, with the increase of NOR being sharper. The nitrate to sulfate ratio tended to increase with increasing temperature as well. Based on a semi-quantitative approach, this trend was attributed primarily to the temperature-dependent variations of precursors including SO2 and NO2. The influence of biomass burning emissions on SIA formation was also evident. With stronger impact of biomass burning, an enhancement in NOR was observed whereas SOR was largely unchanged. The different patterns were identified as the dominant driver of the larger nitrate to sulfate ratios measured at higher concentrations of fine particulate matter.  相似文献   
99.
Abstract

A series of mesocosms was exposed to a suite of light treatments and nutrient enrichment in order to generate algal communities of varying biomass. the influence of this biomass on the speciation of copper (II) was studied. Distribution coefficients ( Kd,Lkg?1) were relatively high (log Kd = 5 to 7), indicative of robust trace metal sequestration, and were likely controlled by the particulate organic carbon content (foc). Differences in Kd over time and among treatments were significant, as was the relationship between Kd and foc. Fluorescence quenching was used to determine binding capacities ( Lt , M) and their associated binding constants ( Kcond ,M?1) in order to model the solid phase copper speciation. the Kcond ranged between 2.1 and 5.2 × 1012M?1, indicating a very strong copper-ligand complex, and was higher in mesocosms that received more light. the light Lt increased over time, dramatically after the nutrient enrichment, but did not vary systematically among light treatments. Lt ranged from 7.2 × 10? 7 to 4.9 × 10? 5 M. the large magnitudes of Kd , Kcond and Lt ensured that greater than 97% of total copper in the mesocosms was complexed by organic matter. the total copper concentration ([Cu]T, M) needed to reach a target dissolved copper concentration of 10?12.5 M (pCu = 12.5) was determined for each mesocosm over time. [Cu]T was between 8.02 × 10?5 and 3.41 × 10?2 M, and increased over time. the [Cu]T normalized to the target pCu (Effective Dose Ratio, EDR) increased directly with increases in algal biomass, indicating a direct link between system productivity and copper exposure. Approximately 45% of the variance in EDR was explained by variance in total biomass, while the residual variance in EDR was due likely to differences in the strengths of particle associations and magnitude of binding capacities.  相似文献   
100.
A simulation study was carried out to investigate simultaneously the effects of eco-physiological parameters on competitive asymmetry, self-thinning, stand biomass and NPP in a temperate forest using an atmosphere–vegetation dynamics interactive model (MINoSGI). In this study, we selected three eco-physiological relevant parameters as foliage profiles (i.e. vertical distribution of leaf area density) of individual trees (distribution pattern is described by the parameter η), biomass allocation pattern in individual tree growth (χ) and the maximum carboxylation velocity (Vmax). The position of the maximal leaf area density shifts upward in the canopy with increasing η. For scenarios with η < 4 (foliage concentrated in the lowest canopy layer) or η > 12 (foliage concentrated in the uppermost canopy layer), a low degree of competitive asymmetry was produced. These scenarios resulted in the survival of subordinate trees due to a brighter lower canopy environment when η < 4 or the generation of spatially separated foliage profiles between dominant and subordinate trees when η > 12. In contrast, competition between trees was most asymmetric when 4 ≤ η ≤ 12 (vertically widespread foliage profile in the canopy), especially when η = 8. In such cases, vertically widespread foliage of dominant trees lowered the opportunity of light acquisition for subordinate trees and reduced their carbon gain. The resulting reduction in carbon gain of subordinate trees yielded a higher degree of competitive asymmetry and ultimately higher mortality of subordinate trees. It was also shown that 4 ≤ η ≤ 12 generated higher self-thinning speed, smaller accumulated NPP, litter-fall and potential stand biomass as compared with the scenarios with η < 4 or η > 12. In contrast, our simulation revealed small effects of χ or Vmax on the above-mentioned variables as compared with those of η. In particular, it is notable that greater Vmax would not produce greater potential stand biomass and accumulated NPP although it has been thought that physiological parameters relevant to photosynthesis such as Vmax influence dynamic changes in forest stand biomass and NPP (e.g. the greater the Vmax, the greater the NPP). Overall, it is suggested that foliage profiles rather than biomass allocation or maximum carboxylation velocity greatly govern forest dynamics, stand biomass, NPP and litter-fall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号