首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   9篇
安全科学   6篇
废物处理   1篇
环保管理   2篇
综合类   12篇
基础理论   6篇
污染及防治   6篇
  2023年   6篇
  2020年   3篇
  2019年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2007年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有33条查询结果,搜索用时 93 毫秒
31.
Interactions of the three common atmospheric bases, dimethylamine ((CH3)2NH), methylamine (CH3NH2), ammonia (NH3), all considered to be efficient stabilizers of binary clusters in the Earth's atmosphere, with H2SO4, the key atmospheric precursor, and 14 common atmospheric organic acids (COAs) (formic, acetic, oxalic, malonic, succinic, glutaric acid, adipic, benzoic, phenylacetic, pyruvic, maleic acid, malic, tartaric and pinonic acids) have been studied using the density functional theory (DFT) and composite high-accuracy G3MP2 method. The thermodynamic stability of mixed (COA)(H2SO4), (COA)(B1), (COA)(B2) and (COA)(B3) dimers and (COA)(H2SO4)(B1), (COA)(H2SO4)(B2) and (COA)(H2SO4)(B3) trimers, where B1, B2 and B3 refer to (CH3)2NH, CH3NH2 and NH3, respectively, have been investigated and their impacts on the thermodynamic stability of clusters containing H2SO4 have been studied. Our investigation shows that interactions of H2SO4 with COA, (CH3)2NH, CH3NH2 and NH3 lead to the formation of more stable mixed dimers and trimers than (H2SO4)2 and (H2SO4)2(base), respectively, and emphasize the importance of common organic species for early stages of atmospheric nucleation. We also show that although amines are generally confirmed to be more active than NH3 as stabilizers of binary clusters, in some cases mixed trimers containing NH3 are more stable thermodynamically than those containing CH3NH2. This study indicates an important role of COA, which coexist and interact with that H2SO4 and common atmospheric bases in the Earth atmosphere, in formation of stable pre-nucleation clusters and suggests that the impacts of COA on new particle formation (NPF) should be studied in further details.  相似文献   
32.
It is possible to calculate the exergy for organisms based on classic thermodynamics as already demonstrated by Mejer and Jorgensen [Mejer, H., Jorgensen, S.E., 1979. Exergy and ecological buffer capacity. State-of-the-art in Ecol. Model. 7, 829–846]. The calculation of exergy as eco-exergy, which is based on the information stored in the genome, has lately been proposed by Jørgensen and co-workers. Recently, Ludovisi [Ludovisi, A., 2009. Exergy vs information in ecological successions: interpreting community changes by a classical thermodynamic approach. Ecol. Model. 220, 1566–1577] has put forward a method based on classical thermodynamics, which leads to the calculation of “virtual” values of concentration at equilibrium for a number of organic compounds (VEC) and freshwater organisms (VECE). This paper compares the two approaches by analysing the correlation existing between the VECE- and the β-values derived by Jørgensen et al. [Jørgensen, S.E., Ladegaard, N., Debeljak, M., Marques, J.C., 2005. Calculations of exergy for organisms. Ecol. Model. 185, 165–175]. It was found that there was a good correlation, which can be useful for estimating β-values for organisms whose genome is not known in a sufficient detail. The relationship between VECE- and β-values suggests that two proposed thermodynamic orientors based on these quantities – the eco-exergy index and the structural information – should lead to coherent results when applied to the evaluation of the development state of ecosystems. A numerical simulation shows that this expectation is verified in a major case, but also that different, even opposite, responses can arise, depending on the biological composition of the biocoenosis investigated.  相似文献   
33.
NaClO_2碱性溶液脱硝的热力学计算与实验研究   总被引:1,自引:0,他引:1  
液相氧化脱硝技术被认为是最有前景的脱硝技术之一。在自制的鼓泡反应器中,进行NaClO2/NaOH溶液脱硝实验。热力学计算表明,300~380K,脱硝反应是放热反应,反应的平衡系数均非常大,但随温度的升高而减小。选取吸收时间、NaClO2浓度、初始、反应温度、模拟烟气流量以及烟气中pHNO含量为过程参数,脱硝率作为响应量,分别进行了单因素实验。结果表明:脱硝率随NaClO2浓度、反应温度的增加而升高,随吸收时间、烟气流量或NO含量的增加而降低,在pH7~10范围内,体系获得较好的脱硝效果;NaClO2浓度,初始0.02mol/LpH,10温度70℃,烟气流量0.4L/min的条件下,处理NO含量0.02%~0.05%范围内的烟气,吸收20min内体系脱硝率几乎为100%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号