首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   15篇
  国内免费   136篇
安全科学   9篇
废物处理   6篇
环保管理   2篇
综合类   205篇
基础理论   55篇
污染及防治   63篇
评价与监测   3篇
社会与环境   1篇
  2024年   1篇
  2023年   8篇
  2022年   9篇
  2021年   10篇
  2020年   4篇
  2019年   11篇
  2018年   5篇
  2017年   9篇
  2016年   16篇
  2015年   13篇
  2014年   14篇
  2013年   14篇
  2012年   21篇
  2011年   13篇
  2010年   8篇
  2009年   13篇
  2008年   12篇
  2007年   22篇
  2006年   22篇
  2005年   25篇
  2004年   10篇
  2003年   15篇
  2002年   4篇
  2001年   8篇
  2000年   6篇
  1999年   15篇
  1998年   11篇
  1997年   3篇
  1996年   9篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1990年   1篇
  1988年   1篇
排序方式: 共有344条查询结果,搜索用时 28 毫秒
91.
利用太阳能和斜板式光反应器降解耐晒翠蓝染料的研究   总被引:11,自引:1,他引:11  
自制了一种斜板式光反应器,将TiO2固定在该斜板上,在铁离子存在的条件下,以太阳光为光源,对有机染料直接耐晒翠蓝GL进行了光催化降解的研究。结果表明,在实验条件下,本体系对直接耐晒翠蓝GL染料有明显的降解作用。浓度为25mg/L的直接耐晒翠蓝染料溶液,经60min光照,其降解率达81.4%。此外,还探讨了多种因素对光催化降解的影响  相似文献   
92.
在模拟太阳光照射下,研究无机离子对氯贝酸(CA)光降解的影响。结果表明,卤素离子和HCO_3~-存在时,CA的光降解均符合拟一级动力学。Cl~-和Br~-在浓度较低时可促进CA的光降解,浓度较高时可抑制CA的光降解;I~-和HCO_3~-则可抑制CA的光降解。  相似文献   
93.
节球藻毒素的紫外光降解研究   总被引:1,自引:0,他引:1  
为优化节球藻毒素(NOD)光解处理的最佳光源及反应条件,利用自制光反应装置研究了NOD在暗反应、可见光、暗反应+TiO_2、可见光+TiO_2及单独紫外光(UVA、UVB、UVC)处理下的去除效果,继而选择UVC作为最佳光源进行后续实验,探讨NOD初始浓度、温度、p H和光强对NOD去除效果的影响及反应动力学.结果表明:暗反应、可见光、可见光+TiO_2的组合、UVA和UVB均对NOD无显著去除作用,最高去除率约为20%;UVC处理可以快速去除水中NOD,其去除过程符合二级动力学.UVC处理时,pH对NOD的去除无显著影响;温度升高,NOD去除率缓慢增大,但组间差异并不显著;初始浓度越大,NOD去除率越低;光强增大,NOD去除率快速升高,但到达一定临界值后保持稳定状态.3种因素对UVC去除NOD的影响程度由大到小分别为:光强时间温度.光强318μW·cm~(-2)、p H=7、温度30℃、反应时间4 h为最佳处理条件,此时NOD去除率最高,初始浓度为0.1μg·m L~(-1)的NOD几乎被完全去除,残留浓度低于WHO及我国规定的藻毒素含量限值.研究表明,UVC光解NOD安全高效,是一种非常理想的NOD去除方法.  相似文献   
94.
以固相微萃取(SPME)结合气相色谱(GC)、气相色谱-质谱联用(GC/MS)技术作为分析检测手段,研究光源、有机溶剂、无机盐与腐殖酸对BDE-28光降解的影响,实验结果表明,光源是影响其降解的主要因素,其次,丙酮、铜离子和腐殖酸对其降解的影响较显著.光源对BDE-28光降解速率的影响为300 W汞灯500 W金卤灯100 W汞灯500 W氙灯;有机溶剂对BDE-28降解速率的影响为甲醇/水(1∶1)甲醇己烷甲苯乙腈丙酮;无机离子的影响各有差别:K+、Na+、SO2-4、NO-3、Cl-对BDE-28降解影响不明显,而Fe3+、NH+4促进BDE-28的降解,Fe2+、Cu2+、Br-抑制BDE-28的降解;腐殖酸抑制BDE-28的降解.  相似文献   
95.
聚丙烯酰胺化学降解技术是目前油田含聚污水处理的重要技术之一,包括氧化降解法、光降解法和光催化降解法。文章介绍了此项技术在降解机理和应用方面的研究进展,并通过实验证明了聚丙烯酰胺氧化降解和光降解的可行性,对油田污水中聚丙烯酰胺的化学降解处理具有一定的指导意义。  相似文献   
96.
研究了纳米TiO2光催化剂对活性黄X6G、活性红X3B、活性蓝XBR、碱性绿、碱性紫5BN、碱性品红等6种染料溶液的光解脱色效果。结果表明,在pH2的酸性溶液中,对浓度为60mg/L的6种染料溶液的脱色率均超过93.3%;即使对浓度达200mg/L的活性蓝溶液,其脱色率仍可达78.8%。染料溶液的pH值对纳米TiO2光催化脱色效果影响较大  相似文献   
97.
雌激素等内分泌干扰物在水体中普遍存在,其在再生水中的存在以及在水体中的迁移转化会产生潜在的健康和生态风险。光降解是水体中雌激素消除的主要途径之一,水体中共存的无机离子及有机质等对雌激素的光解存在不同的影响。对高碑店湖再生水体中雌激素的污染状况进行了调查,结果显示表层水中天然雌激素雌酮(E1)和人工合成雌激素17α-乙炔基雌二醇(EE2)的浓度最高。在模拟太阳光照射条件下对E1在水溶液中的降解规律及影响因素进行了研究,发现在模拟1 SUN的光密度条件下,15 min时E1降解率可达85%(C0=5μg·L-1),而氨氮对E1的光降解存在一定的抑制作用,并且抑制作用随着氨氮的升高而变大。与纯水系统相比,高碑店湖表层水基质中E1的光降解速率较低,说明整体上氨氮、HCO-3、浊度等因素对E1光降解产生的抑制作用占主导。对雌酮及其降解产物进行了红外光谱分析,结果显示1 720 cm-1对应的C=O键特征峰在光照时间为0、10和20 min样品中的强度逐渐减弱,而2 854 cm-1和2 925 cm-1对应的脂肪碳的C-H键特征峰先增强后减弱,可能是因为E1结构中的C-C=O发生了反应生成了C=C-OH,而随着反应的继续,C=C也被进一步氧化,但降解产物的结构需要进一步研究推断。随着E1的光降解,E1水溶液的内分泌干扰活性逐渐下降,氨氮虽然对E1的光降解有一定的抑制作用,但随着降解反应的进行E1水溶液的内分泌干扰活性依然呈下降趋势。  相似文献   
98.
多溴联苯醚(PBDEs)光降解研究现状   总被引:6,自引:0,他引:6  
多溴联苯醚(polybrominated diphenyl ethers,PBDEs)为一类新型的持久性有机污染物,因其在环境中的广泛分布和生物累积性而备受关注,环境中PBDEs的降解也成为研究热点.光降解是自然环境中PBDEs降解的主要途径之一,而光降解过程中会形成毒性更高的溴代二英.本文在总结国内外PBDEs光降解研究的基础上,对影响PBDEs光降解的因素(诸如:分子结构、光源、介质等)、途径和产物,特别是溴代二英的形成进行了综述,对目前存在问题及进一步的研究方向进行了讨论和展望.  相似文献   
99.
水中普萘洛尔的紫外光降解机制及其产物毒性   总被引:1,自引:1,他引:0  
彭娜  王开峰  刘国光  曾令泽  姚锟  吕文英 《环境科学》2014,35(10):3794-3799
以高压汞灯为光源,研究了紫外光照条件下水中普萘洛尔(PRO)的光解行为、机制及安全性.PRO光解机制通过活性氧物种(ROS)猝灭实验来确定,光解产物安全性通过发光菌毒性实验来评价.结果表明,PRO的光解速率常数(k)随初始浓度的增加而下降,两者呈显著负相关关系(r2>0.95).随着溶液初始pH的升高,PRO的光解加快,pH 5~9的PRO溶液的k值为0.0953~0.267 min-1.ROS猝灭实验表明,PRO的紫外光解过程包括了激发三重态PRO(3PRO*)参与的直接光解,以及羟基自由基(·OH)和单线态氧(1O2)参与的自敏化光解,直接光解速率常数大于自敏化光解速率常数.采用FFA探针方法测定了不同实验条件下1O2的浓度,其总体变化规律与猝灭实验所得结论一致.发光菌毒性实验表明,PRO光解生成了比母体化合物毒性更强的中间产物.  相似文献   
100.
设计并制备了新型WC/TiO2纳米复合界面光催化剂应用于酚类污染物的光催化降解反应中.采用X射线衍射(XRD)和扫描电子显微镜(SEM)技术分析了WC/TiO2纳米复合界面光催化剂的晶型和表面形貌.结果显示锐钛矿型TiO2纳米颗粒均匀地分散在WC纳米球表面并很好地构筑了WC/TiO2界面.研究了不同WC负载比例的WC/TiO2光催化剂在模拟太阳光照射下降解苯酚的光催化性能.结果表明:WC/TiO2复合界面的形成可以有效地提高TiO2光催化降解性能;其中,3%WC/TiO2(质量分数)光催化降解苯酚的活性最高.利用紫外-可见光谱(UV-Vis)和高效液相色谱-质谱联用技术(HPLC-MS)分析了WC/TiO2纳米复合界面光催化剂降解苯酚的中间产物,提出了苯酚在WC/TiO2界面上可能的降解机理.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号