首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   128篇
  国内免费   381篇
安全科学   101篇
废物处理   47篇
环保管理   58篇
综合类   775篇
基础理论   85篇
污染及防治   136篇
评价与监测   44篇
社会与环境   11篇
灾害及防治   9篇
  2024年   25篇
  2023年   89篇
  2022年   87篇
  2021年   118篇
  2020年   74篇
  2019年   80篇
  2018年   58篇
  2017年   33篇
  2016年   54篇
  2015年   32篇
  2014年   69篇
  2013年   34篇
  2012年   35篇
  2011年   33篇
  2010年   35篇
  2009年   36篇
  2008年   37篇
  2007年   40篇
  2006年   35篇
  2005年   30篇
  2004年   21篇
  2003年   17篇
  2002年   22篇
  2001年   19篇
  2000年   23篇
  1999年   18篇
  1998年   14篇
  1997年   21篇
  1996年   9篇
  1995年   15篇
  1994年   7篇
  1993年   17篇
  1992年   5篇
  1991年   9篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1266条查询结果,搜索用时 15 毫秒
991.
应用厌氧附着生长反应器对富含硫酸盐和有机物的废水进行预处理,以利于后续脱硫反硝化工艺的运行。当进水pH值为7.5时,硫酸盐和有机物的去除分别可达91.5%和90.5%,硫化物生成率可达47.8%。当HRT在7.7 h时,硫酸盐去除率高达95.79%,有机碳去除率为80%左右,硫化物生成率可达58.82%。结果表明,利于后续脱硫反硝化工艺的硫酸盐还原预处理条件为:HRT为7.7~10.2 h,进水pH为7.5~8。  相似文献   
992.
为探讨植物生长调节剂对大豆Cd胁迫伤害的缓解效应,采用营养液培养试验方法,研究了喷施萘乙酸(NAA)和加Zn处理对3个Cd胁迫大豆幼苗的影响.结果表明,加Zn和喷施NAA均可降低Cd胁迫大豆幼苗叶片丙二醛(MDA)和脯氨酸(PRO)含量,可减轻膜脂的过氧化作用及蛋白质的水解;喷施NAA还可降低Cd胁迫大豆幼苗POD活性,提高硝酸还原酶(NR)活性;加Zn对Cd胁迫大豆幼苗NR活性的降低缺乏抑制作用,但降低沔1101叶片中POD活性,提高湘04-6和特早熟毛豆的POD活性,品种之间表现明显的差异性.  相似文献   
993.
采用螯合剂柠檬酸(CA)强化纳米零价铁(nZVI),活化过硫酸钠(PS)体系,降解水溶液中的三氯乙烯(TCE),分别考察了PS、CA、nZVI投加量、溶液初始pH和无机阴离子对TCE降解效果的影响,确定了在TCE降解过程中起主导作用的活性氧自由基,并验证了PS/nZVI/CA体系降解实际地下水中TCE的效果。结果表明:投加适量的CA可以明显提高PS/nZVI体系对TCE的降解效果,但当CA浓度过高时,TCE降解反而受到抑制,过量或不足的PS、nZVI均会降低TCE的降解率;当溶液初始pH为3~9时,PS/nZVI/CA体系可有效降解TCE;溶液中存在的Cl–和HCO_3~-会抑制TCE的降解,其中HCO_3~-的抑制作用大于Cl–;自由基清除实验和电子顺磁共振实验表明PS/nZVI/CA体系中产生了HO·、SO_4~-·和O _2~-·活性氧自由基,其中HO·、SO_4~-·对TCE降解起主导作用;CA的加入有利于实际地下水中TCE的降解,PS/nZVI/CA体系相比PS/nZVI体系,更适应实际地下水中各种水质条件的冲击,具有实际应用前景。  相似文献   
994.
污泥脱水是污泥处理中的一个重要环节,可以减少污泥容量,削减污泥运输和最终处置费用。基于目前污泥处理中污泥脱水的现状,综述了几种高级氧化法对污泥深度脱水的研究进展,包括臭氧氧化法,Fenton、类Fenton氧化法和过硫酸盐氧化法;并展望了污泥脱水技术的发展与应用前景,以期为高级氧化技术在污泥深度脱水理论研究及工程应用提供技术参考。  相似文献   
995.
分别以H2O2和Na2CO3·1.5H2O2活化Na2S2O4降解原油污染土壤,考察氧化后土壤的原油降解率、pH、微生物含量以及原油组分的变化,比较两种活化剂对过硫酸钠氧化—微生物降解联用技术修复原油污染土壤效果的影响。实验结果表明:两种活化剂氧化处理7 d后的最大原油降解率分别达到42.94%和44.07%;氧化后原油组分的占比情况发生变化,w(饱和烃)增加5.28~11.93个百分点,而w(芳香烃)、w(胶质)和w(沥青质)则分别降低了0.10~2.53,2.53~3.80,0.94~3.43个百分点;添加微生物菌剂进行50 d的生物降解后,两种活化剂的最大原油降解率分别达到71.00%和75.70%,比单独微生物降解时提高了5.96~12.08个百分点。  相似文献   
996.
针对滴滴涕(DDTs)和六六六(HCHs)等有机氯农药(OCPs)难以同步降解的问题,采用高铁酸钾(K_2FeO_4)和过硫酸钠(Na_2S_2O_8)联合降解水溶液中的7种OCPs;分别考察了K_2FeO_4投加量、Na_2S_2O_8投加量和溶液初始pH因素的单独作用及交互作用对OCPs降解率的影响;采用气相色谱-质谱联用仪分析鉴定了降解产物,并探讨了K_2FeO_4/Na_2S_2O_8体系对各OCPs的降解机理。结果表明:K_2FeO_4/Na_2S_2O_8体系处理的OCPs降解率大于K_2FeO_4单独处理下的降解率;碱性环境(pH=9~11)有利于α-HCH和γ-HCH的降解,弱碱性环境(pH=7~9)有利于DDTs的降解,中性环境(pH=7)有利于β-HCH的降解。采用二次多项式和逐步回归法可以较好地拟合和预测OCPs降解率与反应条件的关系,当K_2FeO_4投加量8 g·L~(-1)、Na_2S_2O_8投加量2 g·L~(-1)、pH=11时,总环境风险削减率可达79.16%,与验证实验结果相近。这表明模型具有较好的预测能力。K_2FeO_4/Na_2S_2O_8联合处理对OCPs的降解途径主要为脱氯脱氢,但仍有不完全脱氯产物残留。与K_2FeO_4单独处理相比,K_2FeO_4/Na_2S_2O_8双氧化体系实现了对DDTs和HCHs的高效同步降解。  相似文献   
997.
Fe2+活化过硫酸钠降解1,2-二氯苯   总被引:1,自引:0,他引:1  
以Na2S2O8为氧化剂,柠檬酸螯合Fe2+为活化剂,对水中1,2-二氯苯进行处理。首先研究了Na2S2O8浓度、FeSO4浓度、柠檬酸浓度及初始pH值等因素对1,2-二氯苯降解的影响;然后通过正交实验,发现在Na2S2O8浓度14.28 mmol/L、FeSO4浓度7.14 mmol/L、柠檬酸浓度3.57 mmol/L、初始pH值3.0的条件,1,2-二氯苯降解率达到最大(99.28%)。进一步研究表明,柠檬酸螯合FeSO4活化Na2S2O8降解1,2-二氯苯的过程可分为2个阶段,其中第1阶段为快速反应,第2阶段反应速度较慢并且符合一级反应动力学规律。  相似文献   
998.
针对偶氮类有机物废水具有色度大,难降解的特点,以对二甲基氨基偶氮苯磺酸钠(甲基橙)为模拟研究对象,对水体系中铁炭微电解-Fe2+/K2S2O8降解甲基橙的方法进行了研究。通过正交实验确定出该方法各因素的影响程度,进一步通过单因素影响实验确定该方法的最佳条件是:铁炭微电解填料、FeSO4和K2S2O8投加量分别为300 g/L、1.3mmol/L和0.7 mmol/L,初始pH值为7.0。在最佳条件下,甲基橙COD和色度去除率分别能达到64.7%和68.2%。  相似文献   
999.
以原位沉淀法制备的氧化石墨烯/Fe3O4磁性纳米复合颗粒为固定化载体,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐为交联剂,成功固载了辣根过氧化物酶。探讨了固定化条件对辣根过氧化酶活性的影响以及固定化酶的理化性质,实验结果表明,固定化最佳pH为6、温度为30℃、时间为11 h、交联剂浓度为1 mg/L。与游离酶相比,固定化酶具有良好的pH稳定性和热稳定性。最后将固定化酶用于降解水中的苯酚和2,4-二氯酚,并考察了固定化酶的重复利用性。  相似文献   
1000.
随着我国水电事业的飞速发展,鱼类资源正面临着极大的威胁,鱼类救护工程越来越受到重视。从增殖放流、过鱼设施、栖息地保护等三个鱼类救护工程的角度,浅谈了我国鱼类救护工程的现状:增殖放流工程备受关注,放流规模与投入资金大幅度上升,但实际效果不够突出;过鱼设施建设近年来呈快速发展态势,初期监测过鱼效果较好,但是否达到设计要求尚无定论,缺乏过鱼效果评价的科学体系且相关管理法规不到位;鱼类栖息地保护工程开始被重视,在研究尝试之后已经取得一定的效果。建议相关部门审慎对待对增殖放流的投入、加强放流鱼种鱼苗及实际效果的研究评估;增加过鱼设施投入资金并加强过鱼设施的建设和研究,完善实际过鱼效果评估方法,加大鱼道运营管理执法力度;加大对栖息地保护方式的研究投入,使被破坏的鱼类栖息地得到恢复。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号