首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  国内免费   1篇
环保管理   21篇
综合类   10篇
基础理论   11篇
污染及防治   2篇
  2022年   1篇
  2017年   1篇
  2014年   1篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2004年   6篇
  2003年   2篇
  1998年   1篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
11.
This case study on the Sifnos island, Greece, assesses the main factors controlling vegetation succession following crop abandonment and describes the vegetation dynamics of maquis and phrygana formations in relation to alternative theories of secondary succession. Field survey data were collected and analysed at community as well as species level. The results show that vegetation succession on abandoned crop fields is determined by the combined effects of grazing intensity, soil and geological characteristics and time. The analysis determines the quantitative grazing thresholds that modify the successional pathway. Light grazing leads to dominance by maquis vegetation while overgrazing leads to phryganic vegetation. The proposed model shows that vegetation succession following crop abandonment is a complex multi-factor process where the final or the stable stage of the process is not predefined but depends on the factors affecting succession. An example of the use of succession models and disturbance thresholds as a policy assessment tool is presented by evaluating the likely vegetation impacts of the recent reform of the Common Agricultural Policy on Sifnos island over a 20–30-year time horizon.  相似文献   
12.
The aim of this study was to analyse the occurrence of corncrakes in two Swedish meadow sites managed by mowing and grazing, but also with abandoned meadows. Most corncrakes (58%) on meadows were found in unmanaged areas without subsidies to the farmers (i.e. areas with tall vegetation). Several corncrakes (62%) were found in restored areas, managed for less than 10 of the last 40 years, fewer (38%) in areas under continuous management. Vegetation height was negatively associated with number of years of management the last 40 years, and the continuously managed areas were avoided by corncrakes. Sites where corncrake territories occur regularly should be managed to maintain tall vegetation suitable for the species, which requires increased use of mowing. However, the results from our study also suggest that yearly mowing might result in a vegetation structure that is avoided by corncrakes. To achieve a balance between tall grassy vegetation and prevention of succession to scrub a possible management regime would therefore be mowing at intervals of a few years.  相似文献   
13.
对阿拉善荒漠地区不同时间(2005年、2002年、1999年和1980年)禁牧围封梭梭生态特征进行了对比研究。生态特征分析表明7年封育梭梭恢复效果最好,梭梭盖度达到了22.6%,密度增加到每公顷594株,生物量提高到每公顷12.01吨。而25年围封梭梭林密度、盖度和生物量均低于7年封育。年龄结构分析表明1年、4年和7年禁牧封育梭梭均发展趋势,而25年禁牧封育梭梭呈现衰退趋势。动态模拟分析表明通过禁牧封育,干旱区退化梭梭林恢复最佳周期14年,生物量达15.3吨/公顷,盖度28%,密度高达770彬公顷。  相似文献   
14.
State-and-transition models are increasingly being used to guide rangeland management. These models provide a relatively simple, management-oriented way to classify land condition (state) and to describe the factors that might cause a shift to another state (a transition). There are many formulations of state-and-transition models in the literature. The version we endorse does not adhere to any particular generalities about ecosystem dynamics, but it includes consideration of several kinds of dynamics and management response to them. In contrast to previous uses of state-and-transition models, we propose that models can, at present, be most effectively used to specify and qualitatively compare the relative benefits and potential risks of different management actions (e.g., fire and grazing) and other factors (e.g., invasive species and climate change) on specified areas of land. High spatial and temporal variability and complex interactions preclude the meaningful use of general quantitative models. Forecasts can be made on a case-by-case basis by interpreting qualitative and quantitative indicators, historical data, and spatially structured monitoring data based on conceptual models. We illustrate how science- based conceptual models are created using several rangeland examples that vary in complexity. In doing so, we illustrate the implications of designating plant communities and states in models, accounting for varying scales of pattern in vegetation and soils, interpreting the presence of plant communities on different soils and dealing with our uncertainty about how those communities were assembled and how they will change in the future. We conclude with observations about how models have helped to improve management decision-making.  相似文献   
15.
Features of the land management history over a 125,755 km(2) area of central Queensland, Australia were determined from a variety of sources. A random sample of 205 site locations provided the basis for determining trends in land use. Trends in vegetation clearing were determined using sequential aerial photography for the sample sites, revealing a steady rate averaging nearly 1% of the region per annum over 41 years. This measure of sustained clearing over a large region is higher than recently published clearing rates from South America. Land types have been selectively cleared with over 90% of the Acacia on clay land type having been cleared. A land-holder questionnaire pertaining to the random sites yielded a response rate of 71% and provided information on vegetation clearing, ploughing, tree killing (ring-barking or tree poisoning), and fire frequency, season and intensity. The land-holder responses were compared with independent data sources where possible and revealed no mis-information. However, land-holders may have been marginally less likely to respond if the sample area had been cleared, although this effect was not statistically significant. Ploughing and tree killing are variable depending on land type, but the former has affected about 40% of the Acacia on clay land type, effectively eliminating options for natural regrowth. The proportion of decade-site combinations that were reported as having no fires increased from 22% in the 1950s to an average of 42% for subsequent decades, although the reporting of more than one fire per decade has been relatively constant through the study period. The reporting of at least one fire per decade varies from 46% for the Acacia on sand land type to 77% for the Eucalypt on sand land type for decade-site combinations. Fires are more intense when associated with clearing than in uncleared vegetation, but the proportion of cool and hot fires is relatively constant between land types in uncleared vegetation. Nearly all fires reported were either in spring or summer and this seasonally restricted regime is probably at variance with Aboriginal fire regimes. This study describes the rapid transformation of central Queensland. This has yielded substantially increased agricultural production but may also result in a range of negative impacts and these are discussed.  相似文献   
16.
The National Wildlife Refuge System is perhaps the most important system of federal lands for protecting wildlife in the United States. Only at refuges has wildlife conservation been legislated to have higher priority than either recreational or commercial activities. Presently, private ranchers and farmers graze cattle on 981,954 ha and harvest hay on 12,021 ha at 123 National Wildlife Refuges. US Fish and Wildlife Service policy is to permit these uses primarily when needed to benefit refuge wildlife. To evaluate the success of this policy, I surveyed grassland management practices at the 123 refuges. The survey results indicate that in fiscal year 1980 there were 374,849 animal unit months (AUMs) of cattle grazing, or 41% more than was reported by the Fish and Wildlife Service. According to managers' opinions, 86 species of wildlife are positively affected and 82 are negatively affected by refuge cattle grazing or haying. However, quantitative field studies of the effect of cattle grazing and haying on wildlife coupled with the survey data on how refuge programs are implemented suggest that these activities are impeding the goal of wildlife conservation. Particular management problems uncovered by the survey include overgrazing of riparian habitats, wildlife mortality due to collisions with cattle fences, and mowing of migratory bird habitat during the breeding season. Managers reported that they spend $919,740 administering cattle grazing and haying; thus refuge grazing and haying programs are also expensive. At any single refuge these uses occupy up to 50% of refuge funds and 55% of staff time. In light of these results, prescribed burning may be a better wildlife management option than is either cattle grazing or haying.  相似文献   
17.
The international competitiveness of the New Zealand (NZ) dairy industry is built on low cost clover-based systems and a favourable temperate climate that enables cows to graze pastures mostly all year round. Whilst this grazed pasture farming system is very efficient at producing milk, it has also been identified as a significant source of nutrients (N and P) and faecal bacteria which have contributed to water quality degradation in some rivers and lakes. In response to these concerns, a tool-box of mitigation measures that farmers can apply on farm to reduce environmental emissions has been developed. Here we report the potential reduction in nutrient losses and costs to farm businesses arising from the implementation of individual best management practices (BMPs) within this tool-box. Modelling analysis was carried out for a range of BMPs targeting pollutant source reduction on case-study dairy farms, located in four contrasting catchments. Due to the contrasting physical resources and management systems present in the four dairy catchments evaluated, the effectiveness and costs of BMPs varied. Farm managements that optimised soil Olsen P levels or used nitrification inhibitors were observed to result in win-win outcomes whereby nutrient losses were consistently reduced and farm profitability was increased in three of the four case study farming systems. Other BMPs generally reduced nutrient and faecal bacteria losses but at a small cost to the farm business. Our analysis indicates that there are a range of technological measures that can deliver substantial reductions in nutrient losses to waterways from dairy farms, whilst not increasing or even reducing other environmental impacts (e.g. greenhouse gas emissions and energy use). Their implementation will first require clearly defined environmental goals for the catchment/water body that is to be protected. Secondly, given that the major sources of water pollutants often differed between catchments, it is important that BMPs are matched to the physical resources and management systems of the existing farm businesses.  相似文献   
18.
We tested predictions of the relative changes in plant leaf traits in response to land uses in Australian eucalypt grassy ecosystems. Predictions were determined from responses observed in European landscapes in relation to disturbances associated with agricultural land uses. We measured specific leaf area (SLA) and leaf dry matter content (LDMC) across five land uses: reference sites (closest to pre-European state), native pastures (unfertilized), fertilized pastures, sown pastures (cultivated and fertilized) and enriched grassland (previously fertilized, no longer grazed). Leaves were expected to have higher SLA and lower LMDC at sites with increasing fertility and/or disturbance.The predictions were confirmed, with SLA increasing progressively in land uses associated with (1) grazing; (2) grazing and fertilization; (3) grazing, fertilization and cultivation. Values for LDMC were closely (but inversely) correlated with those of SLA. For both traits, there were relationships with available soil phosphorus but not with soil total nitrogen. The positive correlation of SLA with phosphorus was not evident above 30 mg kg−1, the recommended level of phosphorus for improved pastures.Results confirm patterns of leaf-trait response to disturbance that reflect fundamental constraints to plant survival in habitats with different levels of resources and disturbances. A conservative strategy for low productivity undisturbed habitats is associated with low SLA and high dry matter content in contrast to fertile disturbed habitats which select for high SLA and low dry matter content. The changes in leaf traits across land uses resulted from species substitution rather than variation within species across sites, and most notably the replacement of native by annual exotic species as land use intensifies.Recommended fertilization rates for pasture production convert the ground layer to plants with soft, digestible leaves, that are responsive to fertilizer and desirable for livestock production. However, fertilization also drastically reduces the diversity of native plants and annual plants tend to dominate. The trade-off associated with high production includes increased vulnerability to soil erosion, due to reduced plant cover and low persistence of cover. If alternative ecosystem values such as erosion control, water quality, salinity control and biodiversity persistence are required, incentives may be needed to offset the loss of production that can be gained from fertilizer application.  相似文献   
19.
Grazing with livestock is a common feature of nature and rangeland management. Although both aim at different, seemingly opposing goals, i.e. maintenance of biodiversity values versus maximization of animal production, they nonetheless have a common interest in maintaining the rangeland or natural environment in a state that ensures either the first or the second goal. In order to accomplish an effective and efficient grazing management, in terms of grazer density, grazer composition, grazing seasonality, and to prevent under- and overgrazing, a grazing capacity model (GCM) was developed, that should be applicable in both rangeland and nature conservation management conditions and that takes spatio-temporal environmental variation into account. This spatio-temporally dynamic model considers crucial variables at both the terrain and the grazer level, such as (seasonally) fluctuating forage yield, forage quality, plant palatability, accessibility of the area, soil erosion vulnerability, animal nutritive requirements, animal behaviour and general habitat condition. It predicts the optimal grazer species and density, taking into account the seasonal variation in animal needs and fluctuating terrain characteristics. A sensitivity analysis was conducted to define each parameter's relative impact on the final outcome of the model.We present the GCM outline and illustrate the functionality of this model for Shetland ponies and Highland cattle, grazing in a temperate coastal dune environment. According to the model, seasonal fluctuations in optimal grazer densities occur: the area can support higher densities in summer and autumn than it can during winter and spring. With the current density of grazing animals and the choice for year-round grazing at non-fluctuating animal densities, the model consequently predicts overgrazing in winter and undergrazing in summer and autumn. Both undergrazing and overgrazing scenarios might lead to non-sustainable situations in the future.  相似文献   
20.
The influence of management intensity on the richness, abundance and composition of land snail species was examined in 21 calcareous, nutrient-poor cattle pastures in the northwestern Jura mountains, Switzerland. Grazing intensity was positively correlated with the extent of fertilization of the pastures. Pastures without fertilizer application and with low grazing intensity harboured more snail species and more threatened snails than pastures with annual addition of manure or pastures with manure and nitrogen fertilizer and higher grazing intensity. Fewer snail individuals, open-land species and open-land individuals were found on pastures with high than on pastures with low management intensity. To preserve the threatened snail species in dry, nutrient-poor grasslands, a network of pastures should be managed without fertilization and grazing intensity should not exceed 180 LU ha−1 d (product of livestock units per hectare and grazing days).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号