首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
环保管理   21篇
综合类   1篇
基础理论   2篇
污染及防治   7篇
评价与监测   5篇
  2022年   1篇
  2010年   2篇
  2009年   2篇
  2008年   8篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2002年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1981年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
31.
We synthesized nine studies that examined the influence of land use at different spatial scales in structuring biotic assemblages and stream channel characteristics in southeastern Minnesota streams. Recent studies have disagreed about the relative importance of catchment versus local characteristics in explaining variation in fish assemblages. Our synthesis indicates that both riparian- and catchment-scale land use explained significant variation in water quality, channel morphology, and fish distribution and density. Fish and macroinvertebrate assemblages can be positively affected by increasing the extent of perennial riparian and upland vegetation. Our synthesis is robust; more than 425 stream reaches were examined in an area that includes a portion of three ecoregions. Fishes ranged from coldwater to warmwater adapted. We suggest that efforts to rehabilitate stream system form and function over the long term should focus on increasing perennial vegetation in both riparian areas and uplands and on managing vegetation in large, contiguous blocks. Minnesota Cooperative Fish and Wildlife Research Unit is jointly sponsered by U.S. Geological Survey Biological Resources Division, the University of Minnesota, The Minnesota Department of Natural Resources, and the Wildlife Management Institute.  相似文献   
32.
A small, coastal stream in the San Francisco Bay area of California, USA, received the discharges from a drinking-water filtration plant. Two types of discharges were present. Discharges from filter backwashing were 3–4 times base stream flow, occurred 10–60 times per day, contained fine sediments, and each lasted about 10 min. The other discharge was a large, steady flow of relatively sediment-free water from occasional overflow of the delivery aqueduct which generally lasted several hours a day.Samples of invertebrates from natural substrates had significantly fewer taxa and lower density at the two stations below the backwash than at the two above. However, when stable artificial substrates were used, there were no significant differences among all four stations. The aqueduct apparently had no effect because the. invertebrate community at the station upstream of the backwash but downstream of the aqueduct was statistically similar to the station above the aqueduct. To test for acute toxicity, we exposed additional artificial substrates to short-term simulated backwash conditions. These exposures had no effect on invertebrate density or drift. Three-spine stickleback (Gasterosteus aculeatus) populations were also significantly reduced at the two downstream stations and were made up mostly of larger, adult fish. Prickly sculpins (Cottus asper), restricted to the most downstream station, were emaciated and had poor growth, probably as a result of scarce benthic food organisms. Artificial redds with eggs of rainbow trout (Salmo gairdneri) had significantly lower survival at two stations below the plant backwash (30.7% and 41.8%) than at the one above it (61.4%). Hatchery rainbow trout held in cages below the treatment plant from 7 to 37 days survived and continued to feed.Thus, the major effect of the water treatment plant on fish and invertebrates probably was not from acute toxicity in the discharges or the occasionally large discharge of clean water from the aqueduct, but was from the fluctuating backwash flows containing fine sediment that displaced small fish downstream and created unstable benthic substrates for invertebrates.The filter plant that we studied is a direct-feed type (that is, no sedimentation before filtration). These generally require greater frequencies of backwashing than do conventional plants and may therefore have greater biological impacts. Direct-feed plants are becoming increasingly popular throughout the world, for the most part because they are cheaper to build and operate. But if the associated biological problems are mitigated, then the cost savings of direct-feed compared to conventional plants may be lost.  相似文献   
33.
The choice of spatial and temporal scale used in environmental assessments may influence the observed results. One method of assessing the impact of stream habitat alterations involves the comparison of response variables among treatment categories (i.e., impacted and unimpacted sites). The influence of spatial resolution on patterns of response variables among treatment categories in assessments of stream channelization and other types of habitat alterations has not been evaluated. We examined how patterns of 10 community response variables among channel types and our interpretations of channelization impacts on fish and macroinvertebrate communities differed among three spatial resolutions in a warmwater stream in Mississippi and Alabama. Four fish and three macroinvertebrate community response variables exhibited different patterns among channel types at different spatial resolutions. Our interpretations of the impacts of channelization on fish and macroinvertebrate communities differed among spatial resolutions. Channelization had a negative influence on fish communities either with or without evidence of potential community recovery in one channel type. Channelization impacts on macroinvertebrate communities ranged from a negative influence to no effect. Our results suggest that spatial resolution can influence the observed results and interpretations derived from assessments of stream habitat alterations.  相似文献   
34.
A range of macroinvertebrate indices were compared to assess the most appropriate metric for the assessment of acid mine drainage (AMD) in a low alkalinity, highly erosional river in south-east Ireland. Differences were found in the ability of indices to discriminate AMD impact with the Brillouin, BMWP score, Margalef and Shannon Indices the most precise. Taxon richness was also strongly correlated with AMD indicator parameters (e.g. pH alkalinity, sulphate, Zn and Fe) at impacted sites being an equally reliable metric. The response of the community structure to AMD in this river does not fulfil the optimum criteria for either diversity or biological indices, which may explain the variation in the success of different indices seen in this and other studies. The development of indices that model the expected community response to AMD more accurately or are based on the response of indicator species to AMD pollutants are required.  相似文献   
35.
During the last two decades, the State of Connecticut has restored tidal flow to many impounded salt marshes. One of the first of these and the one most extensively studied is Impoundment One in the Barn Island Wildlife Management Area in Stonington, Connecticut. In 1990, twelve years after the re-establishment of tidal flooding, the density of the marsh snail Melampus bidentatus, the numerically dominant macroinvertebrate of the high marsh, in Impoundment One was about half that in reference marshes below the breached impoundment dike. By 1999 the densities of Melampus above and below the dike were not significantly different, but the shell-free biomass was greater above the dike as a result of the somewhat larger number and size of the snails there. Twenty-one years after the renewal of tidal flooding, three marsh macroinvertebrates (the amphipods Orchestia grillus and Uhlorchestia spartinophila and the mussel Geukensia demissa) were significantly less abundant in the previously impounded marsh than in the reference marshes, whereas another amphipod (Gammarus palustris) was more abundant above the breached dike where conditions appeared to be somewhat wetter. In 1991 the fish assemblage in a mosquito-control ditch in Impoundment One was similar to that in a ditch below the breached dike; however, the common mummichog Fundulus heteroclitus appeared to be less abundant in the restoring marsh. By 1999 the number of mummichogs caught in ditches was significantly greater in Impoundment One than in the reference marsh, but the numbers of mummichogs trapped along the tidal creek were comparable above and below the dike. The results obtained in this study and those of other restoring marshes at Barn Island indicate the full recovery of certain animal populations following the reintroduction of tidal flow to impounded marshes may require up to two or more decades. Furthermore, not only do different species recover at different rates on a single marsh, but the time required for the recovery of a particular species may vary widely from marsh to marsh, often independently of other species.  相似文献   
36.
Bioassessment is used worldwide to monitor aquatic health but is infrequently used with risk-assessment objectives, such as supporting the development of defensible, numerical water-quality criteria. To this end, we present a generalized approach for detecting potential ecological thresholds using assemblage-level attributes and a multimetric index (Index of Biological Integrity—IBI) as endpoints in response to numerical changes in water quality. To illustrate the approach, we used existing macroinvertebrate and surface-water total phosphorus (TP) datasets from an observed P gradient and a P-dosing experiment in wetlands of the south Florida coastal plain nutrient ecoregion. Ten assemblage attributes were identified as potential metrics using the observational data, and five were validated in the experiment. These five core metrics were subjected individually and as an aggregated Nutrient–IBI to nonparametric changepoint analysis (nCPA) to estimate cumulative probabilities of a threshold response to TP. Threshold responses were evident for all metrics and the IBI, and were repeatable through time. Results from the observed gradient indicated that a threshold was 50% probable between 12.6 and 19.4 g/L TP for individual metrics and 14.8 g/L TP for the IBI. Results from the P-dosing experiment revealed 50% probability of a response between 11.2 and 13.0 g/L TP for the metrics and 12.3 g/L TP for the IBI. Uncertainty analysis indicated a low (typically 5%) probability that an IBI threshold occurred at 10 g/L TP, while there was 95% certainty that the threshold was 17 g/L TP. The weight-of-evidence produced from these analyses implies that a TP concentration > 12–15 g/L is likely to cause degradation of macroinvertebrate assemblage structure and function, a reflection of biological integrity, in the study area. This finding may assist in the development of a numerical water-quality criterion for TP in this ecoregion, and illustrates the utility of bioassessment to environmental decision-making.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号