首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  国内免费   8篇
安全科学   3篇
环保管理   2篇
综合类   21篇
基础理论   14篇
污染及防治   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2014年   4篇
  2013年   5篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1998年   2篇
  1996年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有41条查询结果,搜索用时 359 毫秒
21.
使用硼氢化钠还原硝酸银,聚乙烯醇(PVA)作为分散剂,制备出粒径为(7 ± 3)nm的纳米银,分别使用计数法和溶解氧法,研究了纳米银对小球藻(Chlorella vulgaris)生长、光合作用和呼吸作用的影响,并调查了对叶绿素a的抑制状况.结果显示,黑暗条件下加入3mg/L的纳米银,基本抑制了小球藻的呼吸作用,当暴露于4mg/L的纳米银时,小球藻生长的抑制率为93%;而光照条件下加入10mg/L纳米银时,才能抑制其光合作用,此时对小球藻生长的抑制率达到90%.光照时,叶绿素a在10mg/L纳米银的作用下,抑制率达到77%.研究表明了纳米银对小球藻呼吸作用有很强的抑制作用,对光合作用的影响可能通过抑制叶绿素a的合成或破坏叶绿体的结构来完成;光照能够明显减弱纳米银的毒性.  相似文献   
22.
岩溶表层带土壤温度和含水率对呼吸作用的影响   总被引:1,自引:0,他引:1  
吴夏  朱晓燕  张美良  潘谋成 《生态环境》2013,(12):1904-1908
全球环境变化对岩溶区的碳循环产生重要的影响,而土壤呼吸作用在全球环境变化的影响和反馈的过程中具有十分重要的作用。因此,以岩溶区的岩溶表层带为研究对象,研究了土壤呼吸作用与土壤温度和大气降水量之间的响应机理和内在联系。研究结果表明:岩溶表层带的土壤呼吸作用具有单峰型的季节性变化特征。洼地0~5、10~20 cm 的土壤呼吸速率在范围变化分别为82.58 mg· m-2· h-1至412.89、151.39 mg· m-2· h-1至523 mg· m-2· h-1,最大值出现在8月中旬。坡地0~5、10~20 cm的土壤呼吸速率在范围变化55.05 mg· m-2· h-1至412.89、137.63 mg· m-2· h-1至495.47 mg· m-2· h-1,最大值出现也在8月中旬。洼地的土壤呼吸作用相对强于坡地,主要是由于坡地土壤相对洼地土壤较薄并且容易被降水冲刷搬运。在大气降水量不成为限制土壤呼吸作用的因子下,土壤温度为主要控制土壤呼吸作用的因子。因此,该研究可为控制土壤呼吸作用缓和大气CO2的升高和温室效应应对策略,为国家固碳减排的科学决策提供理论依据。  相似文献   
23.
秸秆还田条件下农田系统碳循环研究进展   总被引:9,自引:0,他引:9  
秸秆还田是农田生态系统的固碳减排的一种措施,现已成为国内外学者研究的热点。本文在分析农田系统碳循环流通的基础上,将系统划分为土壤、植物和大气3个子系统,对秸秆还田条件下各个子系统中碳的流动变化情况进行讨论。在土壤子系统中,秸秆还田对土壤有机碳(SOC)、土壤矿化碳、土壤微生物碳(MBC)的变化都有作用。秸秆还田的初期可能会降低微生物利用碳源的能力,影响群落物种分布的均匀度,致使作物对碳、氮利用率下降;然而,长期的效应仍会增加土壤微生物的多样性和活性。研究亦认为秸秆还田特别是与有机肥配合使用,能够提高土壤有机碳的含量;对土壤有机碳矿化具有明显促进作用,但是对土壤原有的有机碳矿化影响尚不清楚。秸秆还田在植物子系统中的影响主要集中在植物光合碳变化。已有的研究表明秸秆还田对作物光合作用的影响表现为正效应;然而根际碳流通的变化尚不清楚。在大气子系统中,秸秆还田能够增强旱地耕作土壤的呼吸作用,促进CO2的排放;而淹水条件下,秸秆还田使土壤有机碳矿化受到了明显抑制,对CO2没有明显影响。与此类似,淹水条件促进CH4排放,排水良好可以减少CH4的释放。事实上对CH4的排放而言,水份的影响可能比秸秆还田所产生的影响更大。笔者认为秸秆还田后土壤有机碳流通变化机理,及根际碳的流通变化影响仍有待进一步解析。其次,农业机械使用所产生的 CO2气体在研究秸秆还田模式时也应被考虑在内。除此之外,秸秆还田这种减排措施(CO2)的减排潜力、适宜应用的区域、可能的协同作用和一些限制及不利因素还没有得到确切的评估,实施过程中应考虑社会和经济层面上的因素。  相似文献   
24.
抗生素广泛用于人体和动物疾病治疗,但使用后大部分以母体形式排除体外,通过污泥还田、污灌及其他各种途径进入土壤环境,对陆生生态环境产生潜在威胁。为评价抗生素对土壤微生物活性和功能的影响,以3种不同抗生素(磺胺嘧啶、氧四环素和诺氟沙星)为靶标化合物,采用OECD标准土壤呼吸实验和氮硝化实验方法,运用SPSS软件对实验结果进行统计分析,考察抗生素对土壤微生物活性和氮转化功能的影响。实验结果显示:在呼吸实验中,磺胺嘧啶和氧四环素在初始阶段对土壤呼吸具有一定的抑制作用,并且氧四环素的抑制强度低于磺胺嘧啶,其最高抑制率分别为76.8%和20.7%;在实验后期则出现一定激活作用,最高激活率分别为343%和218%,随着时间的推移激活效应减弱。诺氟沙星在呼吸实验初期对微生物活性出现激活作用,最高激活率为15.4%;后期则出现一定的抑制作用,最高抑制率为21.9%。在硝化实验中,磺胺嘧啶对土壤A的微生物硝化作用在各处理之间未出现显著性差异,而对土壤B则具有一定抑制作用,最高抑制率为20%;氧四环素和诺氟沙星则相反,在土壤A中对微生物硝化作用的抑制率分别为50%和19%,这种硝化作用差别性可能是由于土壤pH值和抗生素本身的抗菌谱所引起。通过以上实验结果可得出如下结论:3种不同类型的抗生素对土壤的微生物活性和氮转化功能会产生不同的作用,这种不同主要来自于抗生素种类、土壤类型及抗生素的浓度等因素的影响。因此,土壤中抗生素的引入将可对陆生生态环境造成一定影响,在实际粪便还田过程中应开展风险评估。  相似文献   
25.
含丰富藻类的河流由于藻类的光合作用与呼吸作用导致水中的溶解氧变化十分复杂且昼夜的变幅很大。使生化需氧量BOD_5的模拟所需采用的BOD_5—DO耦合模型的求解十分困难。本文根据在绵远河与石亭江的实际研究中采用了罗宾斯模型并作了合理的简化。利用藻类在夜间只有呼吸作用的特点进行溶解氧平衡计算以确定模型参数。在水质模拟中对模拟值与实测值作了比较,可看出模拟精度较好,因此本方法是适用和可取的。  相似文献   
26.
臭氧对倒挂金钟和蚕豆呼吸作用的影响   总被引:4,自引:0,他引:4  
在较低浓度臭氧作用下,植物的呼吸受到刺激,在一定时间内,这种影响不易消除;在高浓度臭氧作用下,植物的呼吸受到抑制,在一定时间内保持相对稳定,以后逐渐恢复,分析讨论了臭氧影响植物呼吸变化的机理。  相似文献   
27.
水中溶解氧(DO)是衡量水质的一个重要参数,是指溶解在水中的分子态氧,它的饱和程度与空气中氧的分压,大气压和水温有密切关系;影响其含量的因素主要有:曝气作用、光合作用、呼吸作用与废弃物的氧化作用.  相似文献   
28.
于2011年枯水期和丰水期调查了九龙江的溶解氧、pH、溶解无机碳(DIC)和总碱度(TAlk),并计算水体CO2分压(pCO2)。九龙江溶解氧饱和度平均为67±18%(枯水期)和57±12%(丰水期),最低只有10%(枯水期)和35%(丰水期);pH为7.08±0.12(枯水期)和7.22±0.11(丰水期),最低只有6.88(枯水期)和6.98(丰水期);DIC为1027±620μmol/kg(枯水期)和820±340μmol/kg(丰水期);TAlk在枯水期为885±570μmol/kg,比相应DIC低140±70μmol/kg。水体TAlk受控于流域地质背景和化学风化的影响,而DIC既包含流域风化过程的产物HCO3-,也包含水柱呼吸过程和沉积物中其他生物地球化学过程释放的游离CO2。九龙江pCO2高达3470±1640μatm(枯水期)和3590±1410μatm(丰水期),超过大气平衡水平8.9~9.2倍。过饱和CO2与表观耗氧量的耦合分析表明,水柱呼吸作用只能说明九龙江高pCO2的66%~94%。  相似文献   
29.
红河州某矿区周围采集土壤样品。研究矿区样品的土壤呼吸作用、酶活性等部分生物学指标。实验结果表明矿区周围土壤的微生物学指标随距离矿区的远近呈现出一定的变化特征。  相似文献   
30.
研究了氯霉素对沉积物中细菌总教、碱性磷酸酶活性及沉积物呼吸作用的影响表明氯霉素对沉积物细莆总数的影响呈现显著的浓度效应,在低浓度时影响不大,但在高浓度时抑制作用很显著;氯霉素在高浓度下对碱性磷酸酶活性具有抑制作用,且随着药物浓度的增加和时间的延长抑制作用加大;氯霉素对沉积物呼吸作用强度的影响,表现为非持续性的影响,尤其对于低浓度氯霉素来说,随着降解或者抗性种群的增加,呼吸作用逐渐恢复正常.而高浓度氯霉素对呼吸作用的影响时间则要长一些,影响程度也更大一些.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号