首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   66篇
  国内免费   323篇
安全科学   30篇
废物处理   4篇
环保管理   25篇
综合类   441篇
基础理论   293篇
污染及防治   46篇
评价与监测   4篇
社会与环境   6篇
灾害及防治   2篇
  2024年   16篇
  2023年   27篇
  2022年   38篇
  2021年   38篇
  2020年   30篇
  2019年   31篇
  2018年   28篇
  2017年   26篇
  2016年   27篇
  2015年   39篇
  2014年   55篇
  2013年   44篇
  2012年   45篇
  2011年   47篇
  2010年   60篇
  2009年   57篇
  2008年   50篇
  2007年   41篇
  2006年   31篇
  2005年   11篇
  2004年   12篇
  2003年   13篇
  2002年   15篇
  2001年   16篇
  2000年   7篇
  1999年   8篇
  1998年   1篇
  1997年   10篇
  1996年   7篇
  1994年   7篇
  1993年   1篇
  1992年   1篇
  1991年   7篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
排序方式: 共有851条查询结果,搜索用时 62 毫秒
831.
富集培养从受污染土壤中分离到的能够以4-氯酚为唯一碳源和能源的微生物,16S rDNA序列分析表明,该微生物为Ac/naobacter sp..其降解4.氯酚的机制为邻位裂解途径,氯代邻苯二酚1,2-双加氧酶的活性可以通过氯酚的诱导显著提高.当氯酚的初始浓度范围为2~8 mmol/L时,该微生物能够很好地生长,并能有效地降解氯酚.除4.氯酚外,该微生物还可以降解2-氯酚、3-氯酚和2,4-二氯酚,有较宽的底物范围.添加柠檬酸等共基质不仅能够改善微生物的生长,还可以提高氯酚的降解效率,这对于实际受污染环境的生物修复非常重要.  相似文献   
832.
Zn2+、Co2+和Mn2+对人工湿地基质生物膜的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了金属离子Zn2+,Co2+和Mn2+对复合垂直流人工湿地基质生物膜脱氢酶活性和多糖含量的影响.结果表明,在生物膜混合液中添加Zn2+能在短时间内(6h)迅速提高生物膜的酶活性,增加多糖含量,浓度为2mg/L 的Zn2+可以在较长时间(72h)内保持生物膜的酶活性并且促进多糖的积累.Co2+和Mn2+对生物膜脱氢酶活性及多糖含量的影响较为相似.当Co2+浓度<1mg/L、Mn2+浓度<2mg/L 条件下,6h 时,对脱氢酶活性呈现了不同程度的促进作用,但随着Co2+和Mn2+离子浓度的增加,对脱氢酶活性的影响则表现为抑制作用,并且随着时间的延长,抑制作用越来越明显.在所研究的浓度和时间范围内,Co2+和Mn2+对多糖含量没有明显影响.  相似文献   
833.
罗翠  李茵 《环境科学进展》2008,2(2):180-184
从pH、温度、底物浓度和抑制剂等四方面的作用条件,对厌氧-缺氧-好氧废水生物处理系统中β-葡萄糖苷酶、碱性磷酸酶、亮氨酸氨基肽酶和脂肪酶的作用特性进行研究。试验结果表明,4种酶在60℃有最高酶活;偏碱性条件(pH=8-9)有利于酶促反应的进行;酶活随底物浓度的增加而增大;抑制剂PMSF对各酶抑制效果不尽相同,对葡萄糖、蛋白质和磷酸水解酶的抑制率分别为72.7%、26.1%和26.8%,而对脂肪酶的抑制率高达85.2%;最适作用条件下的各待测酶的活性可达日常作用条件的1.5~8倍;酶的活性与COD、氨氮、总氮和总磷等生化因子有较好的相关性。由此得出控制相关作用条件可最大限度地发挥酶的作用性能,提高废水处理效率。  相似文献   
834.
研究了不同土壤中,氯氰菊酯降解变化和对土壤酶活性的影响。结果表明,氯氰菊酯在土壤中的降解遵循一级动力学方程,降解半衰期为15.1—31.4d。土壤中加入氯氰菊酯后,对土壤过氧化氢酶和淀粉酶活性仅在高剂量时才有抑制作用。氯氰菊酯对不同土壤酶活性的影响与土壤性质有关,但处理培养时间达25d后,不同土壤中各项酶活性指标基本恢复至对照水平。  相似文献   
835.
采用模拟镉(Cd)污染土壤培养法研究不同浓度Cd(0、10、20、40、80、160 mg kg–1)处理对Cd超积累植物龙葵(Solanum nigrum)幼苗营养元素氮(N)、磷(P)、钾(K)吸收及质膜ATP酶活性的影响.结果表明,Cd处理浓度≤40 mg kg–1时显著促进龙葵幼苗的生长(叶性状、主根长、株高度和基径粗度)以及生物量的积累与分配;而当Cd处理浓度>40 mg kg–1时则出现明显的抑制作用.而当Cd处理浓度为10 mg kg–1时,则提高显著幼苗叶片叶绿素(Chl.a、Chl.b、Chl.[a+b])含量,达到最高值;且叶绿素含量随胁迫程度的增强而先升后降.随胁迫程度的增强,幼苗根、茎、叶和果实中的N、P和K含量先升后降(除茎P降低外);而植株组织中的Cd积累量逐渐增大且分布为叶>茎>根>果实.同时,丙二醛(MDA)含量与过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性随Cd浓度增大而增大,但超氧化物歧化酶(POD)活性先升后降.随胁迫程度的增强,幼苗地上(茎与叶)和地下(根)部H+-ATP以及地下部Ca2+-ATP酶活性不断降低,而地上部Ca2+-ATP酶活性先升高后降低.因此,龙葵在高浓度Cd胁迫(≥40 mg kg–1)下,可能通过加快根对Cd离子的吸收和转运,提高抗氧化酶(CAT和SOD)活性,降低POD与质膜ATP酶活性,调节对N、P和K的需求,从而起到对Cd胁迫的解毒作用.  相似文献   
836.
研究不同裂解温度制备的生物质炭和氮肥对马尾松人工林土壤微生物群落结构和酶活性影响的差异,探究影响微生物群落结构和酶活性的关键土壤理化性质,为改良马尾松人工林土壤提供理论参考.以江苏省镇江市下蜀林场马尾松人工林土壤为研究对象,开展60 d的培养实验,设计对照(CK)、添加300℃生物质炭(BC300)、添加500℃生物质炭(BC500)、添加氮肥(N)、添加300℃生物质炭和氮肥(BC300-N),以及添加500℃生物质炭和氮肥(BC500-N)共6个处理.结果表明,相比CK, BC500和BC500-N处理的真菌/细菌比值分别升高了2.82%和3.54%(p<0.05), BC500处理的放线菌比例提高了7.94%(p<0.05),这表明500℃生物质炭增强了微生物对土壤难分解有机碳的分解. BC500、N和BC500-N处理分别降低土壤G+菌比例5.14%、5.14%和5.24%(p<0.05),并且分别提高G-菌/G+菌比值8.05%、4.74%和9.55%(p<0.05),这表明500℃生物质炭和氮可能缓解了土壤...  相似文献   
837.
红壤中La对油菜的剂量效应和临界浓度   总被引:15,自引:1,他引:14  
通过盆栽试验,研究了红壤中不同浓度La对油菜的生长、产量、叶绿素含量和过氧化物酶活性的影响.结果表明:低浓度La可促进油菜生长并增加产量,但达不到显著水平;300mg·kg-1以上的高浓度La则显著抑制油菜生长和降低产量.La浓度为600mg·kg-1时油菜死亡,油菜产量降低一半时的EC50=300mg·kg-1.La浓度为15 mg·kg-1时油菜叶片叶绿素和叶绿素a/b分别减少,POD活性随La的浓度的增加和施加时间的延长而逐渐增加.  相似文献   
838.
由于不当农艺措施等人为因素影响,辽宁省棕壤区土壤发生酸化,需要添加改良剂予以阻控。以农田棕壤为研究对象,选取工业矿渣(煤矸石和膨润土矿渣)、秸秆(玉米秸秆、花生秸秆)、菌糠(平菇菌糠、金针菇菌糠)等6种常见的工农业生产副产物作为改良剂,采用室内恒温培养的方法,考察了工农业生产副产物对酸化棕壤的影响。结果表明:添加秸秆、菌糠和工业废弃物均可一定程度上改良土壤的酸度,使土壤pH提高0.29~0.79个单位;添加改良剂可不同程度改变土壤净硝化作用,但影响不大;改良剂的添加有效增强了土壤磷酸酶、蔗糖酶、过氧化氢酶活性。综合而言,农业生产副产物更适合酸化棕壤的改良。  相似文献   
839.
大气污染对悬铃木叶绿素及抗氧化酶系的影响   总被引:6,自引:0,他引:6  
大气污染会影响悬铃木叶片内叶绿素含量以及活性氧清除系统,致使植物体内叶绿素含量降低,抗氧化酶系统活性上升,并使植物体内丙二醛积累增加。交通污染对植物的影响程度与工业污染相当,应引起重视。绿化可减少空气污染,提高环境质量。  相似文献   
840.
纳米技术有望在一定程度上缓解因人口增长带来的粮食危机,纳米级农化品(纳米肥料和纳米农药)展现出的缓释和高效低剂量特性减少了传统农用化学品带来的不利环境影响。该研究着重介绍了工程纳米材料(ENMs)通过直接和间接方式防治作物病害的内在机理,重点阐述了ENMs通过调控植物营养、诱导抗氧化酶活性和改善植物光合作用的方式来抵抗病原入侵对植物造成的氧化胁迫;同时,研究亦指出ENMs能够通过诱导植物产生系统获得抗性(SAR)的方式增强植物的抗病能力。对ENMs抗病机理的深入探究能够有效提高植物病害管理,实现作物产量和质量的增加,并极大程度减轻传统农药化学品对农业生态环境的负面影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号