收费全文 | 1955篇 |
免费 | 295篇 |
国内免费 | 1012篇 |
安全科学 | 125篇 |
废物处理 | 12篇 |
环保管理 | 143篇 |
综合类 | 2286篇 |
基础理论 | 278篇 |
污染及防治 | 136篇 |
评价与监测 | 226篇 |
社会与环境 | 29篇 |
灾害及防治 | 27篇 |
2024年 | 99篇 |
2023年 | 266篇 |
2022年 | 284篇 |
2021年 | 282篇 |
2020年 | 264篇 |
2019年 | 193篇 |
2018年 | 143篇 |
2017年 | 129篇 |
2016年 | 144篇 |
2015年 | 165篇 |
2014年 | 200篇 |
2013年 | 121篇 |
2012年 | 142篇 |
2011年 | 116篇 |
2010年 | 111篇 |
2009年 | 99篇 |
2008年 | 104篇 |
2007年 | 99篇 |
2006年 | 57篇 |
2005年 | 59篇 |
2004年 | 34篇 |
2003年 | 26篇 |
2002年 | 23篇 |
2001年 | 13篇 |
2000年 | 15篇 |
1999年 | 7篇 |
1998年 | 12篇 |
1997年 | 9篇 |
1996年 | 12篇 |
1995年 | 10篇 |
1994年 | 8篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1989年 | 1篇 |
1988年 | 2篇 |
2021年3—8月,采用热脱附气相色谱质谱法对天津工业区环境空气中109种挥发性有机物(VOCs)进行离线监测,研究了VOCs组成特征、臭氧生成潜势(OFP)及来源,并对工业源进行精细化分析。结果表明:观测期间VOCs浓度为(46.6±19.7)~(136.8±55.7)µg/m3,对VOCs浓度贡献较高的物种是烷烃、卤代烃、含氧挥发性有机物(OVOCs),烷烃、芳香烃浓度呈中午低、早晚高的日变化趋势,OVOCs反之;OFP贡献占比较大的物种有烷烃、芳香烃、烯烃和OVOCs,烷烃的OFP贡献占比主要受其浓度占比影响,夏季芳香烃、烯烃的OFP贡献占比明显升高,臭氧(O3)治理应加强二者的排放管控。来源解析显示,春夏季VOCs的主要来源为工业源、溶剂使用源、柴油车尾气排放源、油气挥发源和天然源。工业源精细化分析表明,芳香烃浓度与焦炭、纯碱产量,OVOCs浓度与天然气、乙烯、农用氮磷钾化肥产量,卤代烃浓度与天然气、汽车、农用氮磷钾化肥、纯碱产量,烯烃浓度与发电设备产量均呈正相关,初步判断,本地区环境空气中的芳香烃、OVOCs、卤代烃、烯烃可能来自于以上细分工业企业。
相似文献为明确大辽河流域污染物特征及污染物来源,建立“流域—控制单元—行政区”空间拓扑关系,对2019年大辽河流域国控断面水质情况、各控制单元内污染物入河量及空间分布特征进行分析。结果表明:1)大辽河流域28个水质监测断面中,逐月水质均能达到《水污染防治行动计划》中考核目标的占29%,超标污染物以COD、NH3-N为主,超标断面中,COD、NH3-N主要来源为城镇生活源、农村生活源和分散式畜禽养殖,TP主要来源于不同土地利用类型污染源和城镇生活源;2)2019年COD、NH3-N、TN、TP污染物入河量分别为59 195.5、3 115.5、18 229.7、538.3 t/a,从污染源贡献上看,总体呈现为城镇生活源>农村生活源>分散式畜禽养殖污染源>不同土地利用类型(含林地、草地、耕地、城镇用地)污染源>工业源>规模化畜禽养殖污染源;3)污染物入河量空间分布均呈现中部>西南部>东北部,其中控制单元C3、C6、C8、C11、C13、C15、C17是重点管控单元,以上重点管控单元中,COD、NH3-N、TN、TP污染物入河量贡献率分别为68%、73%、77%、72%;4)污染物入河量估算结果与通量模拟值之间误差均小于20%,可用于研究区范围内污染负荷估算。
相似文献以长江流域典型城市为研究对象,估算长江干流、主要支流和通江湖城市COD、氨氮、TN和TP污染排放负荷,梳理典型城市水环境质量、水生态、水资源和水安全特征。结果表明,长江流域内56个城市COD、氨氮、TN、TP的排放量分别为193.78万、15.57万、31.01万和2.18万t/a,流域内大部分城市主要污染源为城市生活源,但工业源和城市面源不容忽视。近年来,流域内城市面源排放负荷占比升高,部分城市水生态系统遭到破坏,存在水质型和资源型缺水、水资源开发利用不合理、非常规水利用率低等问题,导致部分城市仍存在水生态环境安全风险。在此基础上提出了流域内城市“十四五”时期水生态环境综合整治对策建议。
相似文献