首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   15篇
  国内免费   82篇
安全科学   20篇
废物处理   12篇
环保管理   46篇
综合类   259篇
基础理论   91篇
污染及防治   12篇
社会与环境   36篇
灾害及防治   4篇
  2024年   6篇
  2023年   11篇
  2022年   22篇
  2021年   21篇
  2020年   11篇
  2019年   15篇
  2018年   11篇
  2017年   7篇
  2016年   12篇
  2015年   20篇
  2014年   34篇
  2013年   17篇
  2012年   30篇
  2011年   21篇
  2010年   19篇
  2009年   30篇
  2008年   45篇
  2007年   31篇
  2006年   19篇
  2005年   18篇
  2004年   10篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
排序方式: 共有480条查询结果,搜索用时 15 毫秒
61.
利用2005~2007年我国稻田N2O排放通量的田间原位测定资料和国际上其它地区稻田N2O报道结果,对作者建立的不同水分管理方式下水稻生长季N2O排放估算模型进行了验证. 结果表明,持续淹水稻田N2O排放的拟合结果与其他地区淹水稻田N2O通量值相一致. 淹水-烤田-淹水的水分管理方式下,稻田N2O排放的拟合值接近于国际上同类研究结果. 淹水-烤田-淹水-湿润灌溉的水分管理方式下,稻田N2O排放的估算模型对田间原位测定资料有很好的适切性. 为了检验模型输入参数的可信度,将本研究建立的有关我国水稻生产的相关资料数据库与以往研究报道结果进行了比较,结果表明,两者具有高度的一致性. 数据库资料表明,在20世纪50~70年代间,持续淹水稻田占20%~25%,大约75%~80%的稻田采用淹水-烤田-淹水的水分管理方式. 在20世纪80~90年代间,采用持续淹水,淹水-烤田-淹水和淹水-烤田-淹水-湿润灌溉水分管理方式的稻田分别约占12%~16%、 77%和7%~12%. 20世纪50年代水稻生长季平均每季总施氮量为87.49 kg·hm-2,而90年代平均为224.64 kg·hm-2. 其中,化学氮肥的施用量从20世纪50年代的37.4 kg·hm-2增加到了90年代的198.8 kg·hm-2,分别占水稻生长季氮输入总量的43%和88%. 在20世纪50~70年代间有机氮的输入量相对比较稳定,平均变幅在45.2~48.2 kg·hm-2之间,随后逐步降低,有机肥料氮占氮输入总量的比例从20世纪50年代的52%降低到了90年代的9%. 作物残体N输入量从20世纪50年代的4.9 kg·hm-2增加到了80年代的6.3 kg·hm-2. 20世纪50~70年代水稻生长季氮肥施用量具明显的空间变异性,而80~90年代间其空间变异较小. 模型验证和输入参数检验的结果表明,该模型能较好地模拟我国不同水分管理方式下的稻田N2O直接排放量.  相似文献   
62.
双金属和多金属系统对零价铁利用效率的改进   总被引:1,自引:0,他引:1       下载免费PDF全文
为解决Fe0-PRB(零价铁-渗透反应格栅)中Fe0利用效率低、易板结堵塞的问题,分别采用粒径为0.074 mm的试剂铁粉和0.150~0.270 mm的工业铁粉为反应介质,在铁粉表面负载不同比例的Cu或Ni制备Cu/Fe、Ni/Fe双金属和Cu/Ni/Fe多金属颗粒,研究Fe0、双金属和多金属系统去除Cr(Ⅵ)的性能、机制.结果表明:双金属和多金属系统的Cr(Ⅵ)去除率明显高于Fe0,试剂铁粉的Cr(Ⅵ)去除率明显高于工业铁粉.反应8 h达到平衡后,试剂铁粉和工业铁粉的Cr(Ⅵ)去除率仅为45%和20%,Cu/Fe双金属、Cu/Ni/Fe多金属的Cr(Ⅵ)去除率均能达到90%以上,以试剂铁粉和工业铁粉制备的Ni/Fe双金属的Cr(Ⅵ)去除率最高分别为76.6%和44.0%.不同负载率的双金属和多金属系统反应过程中可溶的ρ〔Cr(Ⅲ)〕较低.反应后溶液的pH从反应前的5.0升至10.0左右.反应初期ρ(TFe)(TFe为总铁)超过了0.30 mg/L,其余时间均达标.反应过程中ρ(Cu2+)均在0.40 mg/L以下,均未检测出Ni2+.研究显示,双金属和多金属系统显著提高了Fe0利用效率.   相似文献   
63.
<正>日前,中国能源研究会发布《中国能源展望2030》报告。报告认为,经济增速放缓、产业结构深度调整及能源利用效率水平提高三种力量的综合影响决定了中国能源需求增速将加速放缓,进入低速增长的"新常态"。报告称,在较大的资源环境约束和碳减排压力下,一次能源消费结构持续优化。煤炭消费比重降  相似文献   
64.
某氮肥企业通过开展清洁生产审核,确定以节水、减少废水及水污染物排放量为目标,将企业供排水系统作为本轮清洁生产审核的重点,针对审核重点制定了定量的清洁生产审核目标,通过清洁生产方案的实施实现了环境效益、社会效益与经济效益的统一,为氮肥企业实施清洁生产提供了良好的借鉴。  相似文献   
65.
依据盆栽试验数据,利用植物稳定碳同位素分辨率的理论模型,研究了水分和氮磷营养对小麦叶片碳同位素分辨率△的影响,探讨了节水灌溉下碳同但素分辨率的变化规律。结果表明,水分差异引起△有较大变异。△值随土壤相对含水量(SRWC)水平的提高而提高,在SRWC的60%-70%条件下△值最高,土壤磷水平对△的影响较大,严重缺水时磷水平提高,△值提高;水分状况改善,磷引起△值提高时有一适宜用量范围。SRWC为40  相似文献   
66.
用土柱研究旱地土壤60cm土体夏季的氮肥淋溶损失,结果表明,在土壤施尿素后35d内淋水350mm,在不产生泾流的条件下,淋失率平均为25.5%。还探讨了氮肥淋溶过程中的氮形态变化,以及施氮量和土层深度对氮肥淋浴损失的影响。  相似文献   
67.
利用田间小区试验研究了小麦-玉米轮作中在不同施氮量和不同时期潮土1m土层中硝态氮的计中状况结果表明:3年不施氮肥的土壤仍有6~16kg/hm2的硝态氮,其中0~20cm土层占20%~34%.80%~100cm上层占10%~18%;每季施氨量小于225kg/hm2时.1m上层中各时期硝态氮含量变化不大,在11.4~41.3kg/hm2之间;当施氮量增加到375kg/hm2时,1m土层的硝态氮含量增加1.5~7.4倍,有7.4%~29.9%分布在0~20cm上层中,10%~16%分布在80~100cm上层中225kg/hm2对作物斋求及对土壤环境来说是一个合理的施只量。  相似文献   
68.
长期施用氮肥对土壤细菌硝化基因多样性及组成的影响   总被引:1,自引:2,他引:1  
陈春兰  吴敏娜  魏文学 《环境科学》2011,32(5):1489-1496
以中国科学院桃源农业生态试验站水稻长期定位试验为平台(28°55′49.8″N,111°26′25.7″E),运用PCR、克隆文库构建等分子生物学技术研究长期单施氮肥(尿素)对亚硝化基因(amoA和hao)多样性及其群落结构的影响.结果表明,长期单施氮肥使amoA基因多样性降低(Shannon指数减少了11%),而ha...  相似文献   
69.
氮肥品种及施肥方式对小白菜产量与品质的影响   总被引:12,自引:0,他引:12  
氮肥在农业生产中起着重要的作用,但是氮肥的大量施用不仅造成养分比例失调及环境污染,而且会限制产量的提高和品质的改善。针对广东蔬菜氮肥施用不合理的现象,在田间试验条件下研究了不同氮肥品种和不同底追比对小白菜产量和营养品质的影响,旨在为华南地区的蔬菜施用氮肥提供参考。试验结果表明,施氮极显著提高了小白菜的生物量和产量,亦增加了硝酸盐的累积量,其中尿素处理增产效果最好,蔬菜专用肥(磷铵 尿素)处理小白菜硝酸盐累积量最低,其次是碳酸氢铵和氯化铵处理。各氮肥处理间Vc和可溶性糖含量差异达到极显著水平,其中蔬菜专用肥处理含量最高;不同底、追肥处理间产量和Vc含量的差异达到显著或极显著水平,而可溶性糖含量差异未达到显著水平。除底肥70%、追肥30%的处理外,其余处理均极显著提高了硝酸盐含量。在本试验条件下,蔬菜专用肥既可以提高小白菜产量,又可以明显改善小白菜营养品质与卫生品质,如果以尿素为氮源,底肥70%、追肥30%是兼顾产量和品质的优化处理。  相似文献   
70.
哑河 《绿叶》2011,(11):105-110
100多年前,美国农业部土壤所所长,威斯康辛州立大学土壤专家富兰克林·金(Franklin King)远涉重洋游历中国、日本和高丽,考察三个东亚国家古老的农耕体系,并于1911年出版了一本名叫《四千年农夫》(Farmers of Forty Centuries)的书。作者在考察中产生了疑问:中国农民数千年来如何成功地保持了土壤的肥力和健康,他们没有使用大量的外部资源投入,却养活了这么高密度的人口。为什么美国仅仅耕作几  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号