首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11944篇
  免费   1035篇
  国内免费   3881篇
安全科学   1113篇
废物处理   397篇
环保管理   1150篇
综合类   9735篇
基础理论   1930篇
污染及防治   1893篇
评价与监测   305篇
社会与环境   164篇
灾害及防治   173篇
  2024年   137篇
  2023年   298篇
  2022年   392篇
  2021年   550篇
  2020年   448篇
  2019年   503篇
  2018年   299篇
  2017年   363篇
  2016年   404篇
  2015年   570篇
  2014年   1037篇
  2013年   654篇
  2012年   785篇
  2011年   842篇
  2010年   759篇
  2009年   768篇
  2008年   917篇
  2007年   1073篇
  2006年   906篇
  2005年   749篇
  2004年   722篇
  2003年   647篇
  2002年   509篇
  2001年   419篇
  2000年   351篇
  1999年   293篇
  1998年   267篇
  1997年   191篇
  1996年   194篇
  1995年   220篇
  1994年   153篇
  1993年   114篇
  1992年   109篇
  1991年   76篇
  1990年   63篇
  1989年   64篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
生物完整性指数是水体生态系统健康评价的重要指标,已被广泛应用于湖泊河流等的生态系统健康评价中.但利用水体中分解者微生物群落构建IBI评价标准的报道很少,针对地下水生态系统的研究更是鲜见.本研究针对包钢稀土尾矿库周边地下水生态系统健康开展评价工作,基于地下水环境中微生物群落Illumina高通量测序信息,筛选关键环境因子,甄别敏感或耐受微生物分类属,确定候选生物参数,探索针对地下水的微生物完整性指数(microbiome index of biotic integrity,M-IBI)评价流程与标准构建方法.结果表明,总计12个地下水样点中,4个样点属于健康等级(Ⅰ级),占总样点的33.3%;2个样点属于亚健康等级(Ⅱ级),占总样点的16.7%;5个样点属于一般等级(Ⅲ级),占41.7%;1个样点属于较差等级(Ⅳ级),占8.3%;总体来看,靠近尾矿库的样点健康等级较低,而远离尾矿库参照点受到的干扰较小,健康等级较高,这可能与人类活动干扰影响程度密切相关.参照该地区地下水理化参数基础上的水质情况分析结果,发现应用M-IBI指数可较合理地评估包头稀土尾矿区周边地下水生态系统健康状况.结合生态系统健康内涵,本研究初步提出针对地下水生态系统健康的M-IBI指数评价体系构建流程.  相似文献   
992.
废旧线路板中主要有价金属的生物反应器浸出研究   总被引:2,自引:0,他引:2  
为探讨可供实际生物浸出应用的反应器规模废旧线路板中有价金属浸出特性和工艺条件,通过设计序批式生物浸出反应器,采用分离到的氧化亚铁硫杆菌Z1作为菌种资源,在考察废旧线路板中有价金属的浸出特性的基础上,确定了反应器运行的最佳工艺条件.结果表明,反应器运行的最佳工艺条件为曝气量1L/min、停留时间30h、搅拌速率300r/min以及粉末投加量12g/L.在此条件下,经过101h可以浸出90.24%的铜.同时,经197h的浸出,可以溶出93.06%的镁、92.00%的锌、85.59%的铝和64.51%的镍.因此,生物浸出反应器能有效回收废旧线路板中的有价金属,为该技术的实际应用提供了实验证据.  相似文献   
993.
应用"倍加清"特种微生物技术,结合"气浮+生化+固液分离"的处理工艺,以中海油绥中SZ36-1陆上终端含聚污水为水质样本,研究生物法处理海上油田含聚生产污水的效果。结果表明,该工艺处理后出水可达"1.5.2"的水质标准,远优于"10.10.3"的注入水质指标要求,并确定了相关技术参数。该技术具备处理效果好、适应来水水质范围大、环境友好等优势。但由于空间重量的限制,尚不适用于海上油田平台的生产水处理工艺。  相似文献   
994.
The choice of substrates with high phosphorus adsorption capacity is vital for sustainable phosphorus removal from waste water in constructed wetlands. In this study, four substrates were used: quartz sand, anthracite, shale and biological ceramsite. These substrate samples were characterized by X- ray diffractometry and scanning electron microscopy studies for their mineral components (chemical components) and surface characteristics. The dynamic experimental results revealed the following ranking order for total phosphorus (TP) removal efficiency: anthracite 〉 biological ceramsite 〉 shale 〉 quartz sand. The adsorptive removal capacities for TP using anthracite, biological ceramsite, shale and quartz sand were 85.87, 81.44, 59.65, and 55.98 mg/kg, respectively. Phosphorus desorption was also studied to analyze the substrates' adsorption efficiency in wastewater treatment as well as the substrates' ability to be reused for treatment. It was noted that the removal performance for the different forms of phosphorus was dependent on the nature of the substrate and the adsorption mechanism. A comparative analysis showed that the removal of particulate phosphorus was much easier using shale. Whereas anthracite had the highest soluble reactive phosphorus (SRP) adsorptive capacity, biological ceramsite had the highest dissolved organic phosphorus (DOP) removal capacity. Phosphorus removal by shale and biological ceramsite was mainly through chemical adsorption, precipitation or biological adsorption. On the other hand, phosphorus removal through physical adsorption (electrostatic attraction or ion exchange) was dominant in anthracite and quartz sand.  相似文献   
995.
城市市政污水处理厂产生的剩余污泥是一种良好的重金属生物吸附剂制备原料。以北京某市政污水处理厂产生的脱水剩余污泥为原料,采用碱改性处理方法,制备得到碱改性脱水污泥生物吸附剂,通过其对水中镉的等温吸附实验,考察其重金属吸附效能。研究结果表明:碱改性脱水污泥对水中镉的等温吸附曲线符合Langmuir等温吸附模型。碱改性处理后,脱水污泥对水中镉的最大饱和吸附容量提高了2.8倍,达0.966 mmol/g,显著高于同类型脱水污泥生物吸附剂。碱改性脱水污泥对水中镉的最大饱和吸附容量与改性过程中所使用的Na OH浓度之间的线性相关性较差,呈现一定的波动变化趋势。  相似文献   
996.
采用膜生物反应器(Membrane Bioreactor,MBR)处理石化废水,研究曝气强度分别为1.50,3.00 m3/(m2·h)的条件下,MBR对石化废水中主要污染物的去除特征、跨膜压差(Trans Membrane Pressure,TMP)和混合液性质的变化特征。结果表明:在两种曝气强度条件下MBR对COD、NH+4-N及挥发酚等污染物的平均去除率分别为80.74%、80.23%、96.79%和97.55%、99.34%、98.84%,即在不同曝气条件下,曝气强度的变化对MBR的污染物去除性能无显著影响。但随着曝气强度由1.50 m3/(m2·h)增加到3.00 m3/(m2·h),MBR达到设定的最大跨膜压差(TMPMax=25k Pa)的运行时间由11.8 d增加到31.4 d,TMP上升速率降低。通过活性污泥颗粒粒径分析发现:增加曝气强度后,对膜污染影响显著的活性污泥颗粒粒径范围(0~2μm)所占体积比由2.10%减小到1.78%;并且混合液中溶解性微生物产物(soluble microbial product,SMP)和胞外聚合物(extracellular polymeric substance,EPS)质量浓度分别由24.07 mg/L和15.66 mg/g减小到15.14 mg/L和9.81 mg/g,从而降低了膜污染速率。  相似文献   
997.
This study investigated the bacterial regrowth in drinking water distribution systems receiving finished water from an advanced drinking water treatment plant in one city in southem China. Thirteen nodes in two water supply zones with different aged pipelines were selected to monitor water temperature, dissolved oxygen (DO), chloramine residual, assimilable organic carbon (AOC), and heterotrophic plate counts (HPC). Regression and principal component analyses indicated that HPC had a strong correlation with chloramine residual. Based on Chick-Watson's Law and the Monod equation, biostability curves under different conditions were developed to achieve the goal of HPC 100 CFU/mL. The biostability curves could interpret the scenario under various AOC concentrations and predict the required chloramine residual concentration under the condition of high AOC level. The simulation was also carded out to predict the scenario with a stricter HPC goal (≤50 CFU/mL) and determine the required chloramine residual. The biological regrowth control strategy was assessed using biostability curve analysis. The results indicated that maintaining high chloramine residual concentration was the most practical way to achieve the goal of HPC ≤ 100 CFU/mL. Biostability curves could be a very useful tool for biostability control in distribution systems. This work could provide some new insights towards biostability control in real distribution systems.  相似文献   
998.
Aim of the present study was to synthesize titanium dioxide nanoparticles (YiO2 NPs) from marine actinobacteria and to develop an eco-friendly azo-dye degradation method. A total of five actinobacterial isolates were isolated from Chennai marine sediments, Tamilnadu, India and analyzed for the synthesis of TiO2 NPs using titanium hydroxide. Among these, the isolate PSV 3 showed positive results for the synthesis of TiO2 NPs, which was confirmed by UV analysis. Further characterization of the synthesized TiO2 NPs was done using XRD, AFM and FI'-IR analysis. Actinobacterial crude extract and synthesized TiO2 NPs was found efficient in degrading azo dye such as Acid Red 79 (AR-79) and Acid Red 80 (AR-80). Degradation percentage was found to be 81% for AR-79, 83% for AR-80 using actinobacterial crude extract and 84% for AR-79, 85% for AR-80 using TiO2 NPs. Immobilized actinobacterial ceils showed 88% for AR-79 and 81% for AR- 80, dye degrading capacity. Degraded components were characterized by FT-IR and GC-MS analysis. The phytotoxicity test with 500 μg/mL of untreated dye showed remarkable phenotypic as well as cellular damage to Tagetes erecta plant. Comparatively no such damage was observed on plants by degraded dye components. In biotoxicity assay, treated dyes showed less toxic effect as compared to the untreated dyes.  相似文献   
999.
Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorpfion kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorpfion coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater.  相似文献   
1000.
Bioaerosols from wastewater treatment processes are a significant subgroup of atmospheric aerosols. In the present study,airborne microorganisms generated from a wastewater treatment station(WWTS) that uses an oxidation ditch process were diminished by ventilation.Conventional sampling and detection methods combined with cloning/sequencing techniques were applied to determine the groups,concentrations,size distributions,and species diversity of airborne microorganisms before and after ventilation. There were 3021 ± 537 CFU/m3 of airborne bacteria and 926 ± 132 CFU/m3 of airborne fungi present in the WWTS bioaerosol.Results showed that the ventilation reduced airborne microorganisms significantly compared to the air in the WWTS. Over 60% of airborne bacteria and airborne fungi could be reduced after4 hr of air exchange. The highest removal(92.1% for airborne bacteria and 89.1% for fungi) was achieved for 0.65–1.1 μm sized particles. The bioaerosol particles over 4.7 μm were also reduced effectively. Large particles tended to be lost by gravitational settling and small particles were generally carried away,which led to the relatively easy reduction of bioaerosol particles0.65–1.1 μm and over 4.7 μm in size. An obvious variation occurred in the structure of the bacterial communities when ventilation was applied to control the airborne microorganisms in enclosed spaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号