首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   55篇
  国内免费   183篇
安全科学   50篇
废物处理   29篇
环保管理   16篇
综合类   308篇
基础理论   95篇
污染及防治   70篇
评价与监测   11篇
灾害及防治   2篇
  2024年   8篇
  2023年   23篇
  2022年   31篇
  2021年   47篇
  2020年   33篇
  2019年   41篇
  2018年   25篇
  2017年   32篇
  2016年   31篇
  2015年   25篇
  2014年   42篇
  2013年   36篇
  2012年   32篇
  2011年   22篇
  2010年   12篇
  2009年   23篇
  2008年   21篇
  2007年   16篇
  2006年   17篇
  2005年   6篇
  2004年   8篇
  2003年   17篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
71.
72.
磁性铁基改性生物炭去除水中氨氮   总被引:7,自引:6,他引:1  
氨氮的过度排放是水体富营养化的一个重要原因.然而,随着环境法规的日益严格,传统方法处理效果难以达到要求.吸附法因高效、安全等优点近年来开始应用于去除水中的氨氮.本研究中以共沉淀法将磁性铁基材料负载到市政污泥生物炭上,结果表明其对水中氨氮有良好的去除效果.80℃下合成的材料(MB80)在293 K下对氨氮的饱和吸附量可达17.52 mg·g-1.动力学与热力学结果表明,MB80吸附氨氮的过程更符合伪二级动力学和Langmuir等温线.MB80对氨氮的吸附机制可归纳为静电吸引、孔隙填充、离子交换和氢键结合.且5次循环后对氨氮的吸附量仍十分理想,可达3.18 mg·g-1.本研究的结果可以为高效去除水中氨氮提供一种行之有效的方法,并为市政污泥的处理提供新的出路.  相似文献   
73.
《环境科学与技术》2021,44(5):61-67
蓝藻水华严重影响水环境健康和用水安全,化学絮凝法能高效去除水中藻类。该文以铁盐和亚铁盐为混凝剂、磁性藻基炭(MAB)为助凝剂去除水中铜绿微囊藻,确定了铁盐的最优投配比和MAB的最佳投加量,探讨了MAB对铁盐去除水中铜绿微囊藻的助凝效果和机理。结果表明,铁盐最优Fe2+∶OH~-∶Fe~(3+)投配比例为2∶6∶0.3,投药量以[Fe~(2+)]计为1 mmol/L,MAB最佳投加量为30 mg/L。MAB提高了铁盐去除铜绿微囊藻及相关污染物的混凝效果,促进藻细胞与铁盐水解产物作用生成密实性更好的藻絮体沉淀物,并且具备良好磁响应性能的MAB有助于实现藻絮体的外磁场分离。水中藻细胞和MAB在混凝初期主要通过静电吸附的形式与铁盐水解产物Fex(OH)y作用,混凝中后期则主要通过无定形Fe(OH)_3的网捕卷扫作用得以沉淀去除。表征分析表明,混凝过程中铁盐水解产物与藻细胞表面活性官能团发生作用形成了新的表面基团,可推断Fex(OH)y及其高聚合体与铜绿微囊藻的胞外聚合物之间发生了共聚络合反应。  相似文献   
74.
为探究磁性载体移动床生物膜反应器(MBBR)系统对不同浓度纳米ZnO胁迫的响应,构建2组MBBR开展纳米ZnO胁迫实验,通过对比普通与磁性载体MBBR中COD、NH4+-N去除性能、生物膜形貌、微生物群落及功能基因,分析磁性载体对纳米ZnO胁迫下MBBR中污染物去除性能及微生物的影响.结果表明:低浓度(5,10mg/L)纳米ZnO对COD、NH4+-N去除无显著影响;高浓度(30,50mg/L)纳米ZnO胁迫后,磁性载体MBBR的NH4+-N去除率分别降低10.57%和12.91%,低于普通载体的14.48%和16.94%.相比于NH4+-N,纳米ZnO胁迫对COD去除影响较小.此外,高浓度(30,50mg/L)纳米ZnO胁迫导致更多纳米ZnO颗粒团聚并吸附于磁性载体生物膜表面,继而改变了生物膜群落结构.在10mg/L的纳米ZnO胁迫下,磁性与普通载体生物膜中微单胞菌属(Micropruina)的相对丰度均有所提...  相似文献   
75.
采用电子自旋共振光谱(EPR)技术,分析腐殖酸在光照下对4种典型碳纳米材料诱导产生单线态氧(~1O_2)和羟基自由基(·OH)的影响。基于密度泛函理论计算4种典型碳纳米材料的前线轨道能,比较了它们分别经能量转移诱导产生~1O_2的能力以及经电子传递诱导产生·OH的能力。结果显示,4种不同形状的碳纳米材料(富勒烯、单壁碳纳米管、多壁碳纳米管以及石墨烯)悬浮液在紫外光照下均无~1O_2和·OH产生。与腐殖酸共同存在下,4种碳纳米材料均显著诱导~1O_2的产生,且富勒烯和石墨烯还能光致生成·OH。协同产生~1_O2的能力大小为:单壁碳纳米管富勒烯多壁碳纳米管石墨烯,协同产生·OH的能力大小为:石墨烯富勒烯。~1O_2的产生能力与碳纳米材料的能隙大小和颗粒聚集程度有关,而诱导产生·OH的能力主要取决于化学硬度。总之,我们的研究表明腐殖酸与碳纳米颗粒可协同产生活性氧物种。  相似文献   
76.
将重金属(Cd、Pb、Cu、Zn、Ni)溶液添加到污水处理厂脱水污泥中进行堆肥,考察了污泥的堆肥过程对重金属稳定化的影响。分析发现:进入污泥后各重金属中可交换态+碳酸盐结合态的总占比顺序为Cd(72.31%)>Ni(65.83%)>Zn(33.67%)>Cu(19.49%)>Pb(7.40%)。说明Pb、Cu及Zn与污泥化学物质反应较快,而Cd及Ni的反应速率相对较慢。在整个过程中Pb形态达到稳定状态最快,Cu和Ni的形态稳定速度次之,Zn形态变化稍慢,Cd变化最慢。该结论可为污泥堆肥应用于土壤重金属污染治理的研究提供参考。  相似文献   
77.
《环境化学》2014,(11):2017
富勒烯(C60)是一种在材料科学、生物医药、环境技术等领域具有广泛应用价值的人工碳纳米材料,其生产和使用可导致环境释放.虽然C60分子极难溶于水,但研究发现C60可在长期搅拌或溶剂交换下在水中形成胶体态富勒烯纳米颗粒(nC60),而nC60在地下含水层中有较强的迁移能力.同时,nC60对环境中的疏水性有污染物  相似文献   
78.
Nanotechnology has revolutionized plethora of scientific and technological fields; environmental safety is no exception. One of the most promising and well- developed environmental applications of nanotechnology has been in water remediation and treatment where different nanomaterials can help purify water through different mechanisms including adsorption of heavy metals and other pollutants, removal and inactivation of patho- gens and transformation of toxic materials into less toxic compounds. For this purpose, nanomaterials have been produced in different shapes, integrated into various composites and functionalized with active components. Nanomaterials have also been incorporated in nanostructured catalytic membranes which can in turn help enhance water treatment. In this article, we have provided a succinct review of the most common and popular nanomaterials (titania, carbon nanotubes (CNTs), zero-valent iron, dendrimers and silver nanomaterials) which are currently used in environmental remediation and particularly in water purification. The catalytic properties and functionalities of the mentioned materials have also been discussed.  相似文献   
79.
人工纳米材料生物效应研究进展   总被引:8,自引:0,他引:8  
人工纳米材料(MNMs)由于其所具有的独特性质能满足当前工业发展的多样化需求,近年来获得迅速的发展.目前,越来越多的MNMs已被投放市场,给人们生活带来巨大的变化和进步.但是有关MNMs是否对环境和健康产生不利影响的问题,同样引起了人们广泛的关注.通过总结近年来的相关研究资料,一方面探讨了生物对MNMs的暴露途径;另一方面,从MNMs对动物细胞、肺组织和脑组织的毒性效应,MNMs在生物体内的转移、积累以及皮肤对MNMs的吸收等角度,对MNMs的生物效应进行综述.同时,发现MNMs本身独特的物理化学性质和MNMs的表面修饰是影响MNMs生物效应的重要因素.此外,借鉴超细颗粒的研究结果探讨了MNMs生物效应可能的作用机制.最后展望了纳米毒理学的发展.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号