首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1028篇
  免费   144篇
  国内免费   416篇
安全科学   73篇
废物处理   96篇
环保管理   48篇
综合类   840篇
基础理论   163篇
污染及防治   258篇
评价与监测   100篇
社会与环境   3篇
灾害及防治   7篇
  2024年   6篇
  2023年   22篇
  2022年   21篇
  2021年   43篇
  2020年   34篇
  2019年   45篇
  2018年   28篇
  2017年   32篇
  2016年   39篇
  2015年   57篇
  2014年   80篇
  2013年   50篇
  2012年   81篇
  2011年   80篇
  2010年   85篇
  2009年   91篇
  2008年   78篇
  2007年   99篇
  2006年   84篇
  2005年   87篇
  2004年   73篇
  2003年   56篇
  2002年   48篇
  2001年   33篇
  2000年   35篇
  1999年   25篇
  1998年   36篇
  1997年   18篇
  1996年   34篇
  1995年   20篇
  1994年   17篇
  1993年   12篇
  1992年   9篇
  1991年   6篇
  1990年   11篇
  1989年   10篇
  1988年   2篇
  1987年   1篇
排序方式: 共有1588条查询结果,搜索用时 24 毫秒
81.
苯酚对活性污泥活性及微型动物群落结构的影响   总被引:1,自引:1,他引:0  
为了探究苯酚对污泥活性及微型动物群落结构的影响,以SBR工艺的活性污泥为研究对象,分析苯酚对污泥TTC-ETS活性、INT-ETS活性和微型动物群落结构及其动态变化的影响.结果表明,污泥TTC-ETS活性较之INT-ETS活性能够更有效表征有机毒害物质苯酚对污泥活性的影响,且随着进水苯酚浓度的增大,苯酚对污泥活性的抑制越明显:进水浓度在50mg·L-1时,苯酚对污泥活性的抑制率为(20.75±10.43)%.进水苯酚浓度为100 mg·L-1时,抑制率为(39.73±26.92)%,且波动较大.在300 mg·L-1进水运行后期,苯酚对污泥活性的抑制率稳定在40%左右;苯酚对活性污泥微型动物群落结构的影响随浓度的增大而增大,且对不同微型动物类群影响不同:在低浓度苯酚进水条件下,只有单个微型动物类群(有壳变形虫)受到明显的抑制,而当浓度增大至100 mg·L-1和300 mg·L-1时,对多个微型动物类群(固着型纤毛虫、有壳变形虫、匍匐型纤毛虫、肉食性纤毛虫等)产生抑制,对少数类群(鞭毛虫、线虫等)产生促进作用;苯酚影响下的污泥活性与微型动物之间存在一定的关联性,针棘匣壳虫(Centropyxis aculeata)、多变斜板虫(Plagiocampa mutabilis)等可作为含酚废水处理过程中污泥活性低的指示生物,湖累枝虫(Epistylis lacustris)、软波豆虫(Bodo lens)、跳侧滴虫(Pleuromonas jaculans)等可作为污泥活性高的指示生物.  相似文献   
82.
从太原市焦化厂废水活性污泥中分离、筛选出一株苯酚降解细菌,经生理生化反应和16S rRNA鉴定,该菌株为Diaphorobacter属细菌,命名为PD-07.代谢机制研究表明,苯酚可诱导该菌合成邻苯二酚2,3-加氧酶降解苯酚.为了提高该菌株对苯酚的降解率,以海藻酸钙为材料,对该菌株进行包埋固定化研究.首先采用Plackett–Burman实验设计筛选出影响固定化菌株苯酚降解率的关键因素,然后采用最陡爬坡实验逼近最大苯酚降解率响应区域.最后用Box–Behnken实验设计及响应面回归分析,应用二次方程对实验数据进行拟合得,拟合曲线与实验实测值相关性良好,最佳条件为海藻酸钠浓度3.83%(m/V)、CaCl20.3mol/L、菌胶比1:26.73、固定化时间2h、摇床转速180r/min、培养温度30℃、初始pH值7.2、液固比4.86:1,在此条件下苯酚降解率可达96.89%.  相似文献   
83.
Photocatalytic ozonation of phenol and oxalic acid (OA) was conducted with a Ag^+/TiO2 catalyst and different pathways were found for the degradation of different compounds. Ag^+ greatly promoted the photocatalytic degradation of contaminants due to its role as an electron scavenger. It also accelerated the removal rate of OA in ozonation and the simultaneous process for its complex reaction with oxalate. Phenol could be degraded both in direct ozonation and photolysis, but the TOC removal rates were much higher in the simultaneous processes due to the oxidation of hydroxyl radicals resulting from synergetic effects. The sequence of photo-illumination and ozone exposure in the combined process showed quite different effects in phenol degradation and TOC removal. The synergetic effects in different combined processes were found to be highly related to the properties of the target pollutants. The color change of the solution and TEM result confirmed that Ag+ was easily reduced and deposited on the surface of Tit2 under photo-illumination, and dissolved again into solution in the presence of ozone. This simple cycle of enrichment and distribution of Ag^+ can greatly benefit the design of advanced oxidation processes, in which the sequences of ozone and photo-illumination can be varied according to the needs for catalyst recycling and the different properties of pollutants.  相似文献   
84.
The brominated products, formed in chlorination treatment of benzophenone-4 in the presence of bromide ions, were identified, and the formation pathways were proposed.Under disinfection conditions, benzophenone-4 would undertake electrophilic substitution generating mono- or di-halogenated products, which would be oxidized to esters and further hydrolyzed to phenol derivatives. The generated catechol intermediate would be transformed into furan-like heterocyclic product. The product species were p H-dependent,while benzophenone-4 elimination was chlorine dose-dependent. When the chlorination treatment was performed on ambient water spiked with benzophenone-4 and bromide ions, most of brominated byproducts could be detected, and the acute toxicity significantly increased as well.  相似文献   
85.
利用以苯酚为碳源的驯化液,对某焦化厂曝气池活性污泥进行驯化,经过分离、筛选,挑选出4株高效的苯酚降解菌,编号为h32a2、b31B、h31A和b41a,并通过菌落形态特征、简单染色及生理生化反应初步鉴定为假单胞菌属(Pseudomonas sp.),依据正交实验确定了优势菌群降解苯酚的最佳条件为温度32℃,pH值7.5,菌培养时间16 h,接种量1%。  相似文献   
86.
焦化废水是一种典型的含有难降解有机污染物的工业废水,除含有酚类化合物外,还含有多种芳香烃和杂环类有机污染物,成分复杂,水量大,对环境污染严重。因此,焦化废水处理技术越来越受到环保部门的重视。本文摸索了改性粉煤灰处理焦化含酚废水的试验工艺条件,确定了反应条件,反应时间和反应温度。  相似文献   
87.
Ce3+与Cu2+协同强化芬顿体系氧化苯酚的效能与机制研究   总被引:1,自引:1,他引:0  
张剑桥  迟惠中  宋阳  罗从伟  江进  马军 《环境科学》2016,37(8):3067-3072
研究了Ce~(3+)与Cu~(2+)协同强化芬顿体系在不同初始条件下对水中苯酚的氧化效能与机制.结果表明,在p H适用范围的宽度和H_2O_2浓度变化方面,Ce~(3+)/Cu~(2+)/Fe~(2+)/H_2O_2体系比传统的芬顿体系更具有优势,该体系在p H=5.0、H_2O_2浓度为2.0mmol·L-1的条件下,仍可以对苯酚保持相对较高的氧化效能;Cu~(2+)可能会借助反应过程中的中间产物(醌类物质)生成Cu+,Cu+催化H_2O_2分解生成·OH,Ce~(3+)可能促进体系内醌类物质的形成,加快Fe~(3+)与Fe~(2+)的循环效能,在一定程度上提高了芬顿体系中H_2O_2分解生成·OH的速率,说明Cu~(2+)与Ce~(3+)对芬顿体系的强化作用具有协同性;自由基终止剂依然可以抑制Ce~(3+)、Cu~(2+)强化的芬顿体系对苯酚的降解,由此说明体系中起到氧化作用的活性物种仍然是羟基自由基(·OH).  相似文献   
88.
苯酚、菲在BS-12/DTAB复配修饰膨润土上吸附的差异   总被引:2,自引:0,他引:2  
王腾  孟昭福  任爽  张洋  刘伟  李文斌  田凯 《环境科学学报》2017,37(10):3951-3958
为了探究复配修饰膨润土吸附疏水性不同的污染物的差异,采用阳离子型表面修饰剂十二烷基三甲基溴化铵(DTAB)对两性表面修饰剂十二烷基二甲基甜菜碱(BS-12)修饰膨润土进行复配修饰,采用批处理法研究复配修饰膨润土总修饰比例对苯酚和菲的等温吸附影响,并对比不同温度、pH值和离子强度条件下供试土样对苯酚和菲吸附量、热力学参数的差异.结果表明:随着总修饰比例的增大,复配修饰膨润土对苯酚及菲的吸附能力逐渐增强,0~50%CEC修饰比例下,菲的吸附率大于苯酚的吸附率,当修饰比例超出50%CEC后,苯酚的吸附率大于菲的吸附率,总修饰比例超出150%CEC后,膨润土对苯酚的吸附率变化趋于平缓,而对菲的吸附率开始呈下降趋势;随着土样总修饰比例的增大,温度对苯酚及菲吸附量的抑制效果降低;在KNO_3浓度为0.001~0.1 mol·L~(-1)时,苯酚及菲的吸附量均随着KNO_3浓度的增大而增大;随着pH值的升高,苯酚的吸附量逐渐增大,在pH=7处达到最大,而菲的吸附量则始终呈降低趋势.热力学参数显示,随着总修饰比例的增大,复配修饰土样对苯酚和菲的吸附自发性增强,混乱度增大,当总修饰比例超出150%CEC后,自发性减弱,混乱度下降.  相似文献   
89.
系统研究了1985年以来江苏及邻区的36次小震群,结果表明,江苏及邻区的地震具有成丛活动的特点,每一丛地震活动持续时间和平静时间没有明显的周期性,这反映了它是在一定的外部应力环境控制下发生的.江苏及邻区地震的成丛活动与台湾地区7级以上强震有一定的呼应关系,多发生在台湾地区7级以上强震前后.分析表明,台湾地区7级以上强震...  相似文献   
90.
采用浸渍法制备了四氨基酞菁钯(PdTAPc)/γ-Al_2O_3负载型光催化剂,采用UV-Vis,FTIR,XRD,SEM技术对其进行了表征,并将其用于罗丹明B的可见光催化降解,考察了光催化剂加入量、溶液pH、H_2O_2加入量、反应温度对罗丹明B降解效果的影响,并对光催化剂的稳定性进行了测试。表征结果显示,PdTAPc以圆片状负载于γ-Al_2O_3上,二者的结构均未发生明显变化。实验结果表明:在光催化剂加入量1.6 g/L、溶液pH 7.0、H_2O_2加入量12 mmol/L、反应温度20℃的优化条件下反应120 min,罗丹明B(质量浓度0.05 g/L)的降解率高达95%;光催化剂具有较高的稳定性,使用4次后罗丹明B的降解率仍高于85%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号