首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   5篇
  国内免费   180篇
安全科学   29篇
废物处理   17篇
环保管理   61篇
综合类   365篇
基础理论   65篇
污染及防治   174篇
评价与监测   18篇
社会与环境   9篇
  2023年   13篇
  2022年   21篇
  2021年   26篇
  2020年   29篇
  2019年   33篇
  2018年   25篇
  2017年   29篇
  2016年   27篇
  2015年   46篇
  2014年   25篇
  2013年   45篇
  2012年   20篇
  2011年   52篇
  2010年   21篇
  2009年   43篇
  2008年   31篇
  2007年   40篇
  2006年   29篇
  2005年   21篇
  2004年   19篇
  2003年   15篇
  2002年   16篇
  2001年   23篇
  2000年   24篇
  1999年   12篇
  1998年   11篇
  1997年   11篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   10篇
  1991年   1篇
排序方式: 共有738条查询结果,搜索用时 15 毫秒
731.
During sequestration, carbon dioxide within injection wells is likely to be in a dense state and therefore its weight within the wellbore will play an important role in determining the bottomhole pressure and thus the injection rate. However, the density could vary significantly along the well in response to the variation in pressure and temperature. A numerical procedure is formulated in this paper to evaluate the flow of carbon dioxide and its mixtures in non-isothermal wells. This procedure solves the coupled heat, mass and momentum equations with the various fluid and thermodynamic properties, including the saturation pressure, of the gas mixture calculated using a real gas equation of state. This treatment is particularly useful when dealing with gas mixtures where experimental data on mixture properties are not available and these must be predicted. To test the developed procedure two wellbore flow problems from the literature, involving geothermal gradients and wellbore phase transitions are considered; production of 97% carbon dioxide and injection of superheated steam. While these are not typical carbon dioxide injection problems they provide field observations of wellbore flow processes which encompass the mechanisms of interest for carbon dioxide injection, such as phase transition, temperature and density variations with depth. These two examples show that the developed procedure can offer accurate predictions. In a third application the role of wellbore hydraulics during a hypothetical carbon dioxide injection application is considered. The results obtained illustrate the potential complexity of carbon dioxide wellbore hydraulics for sequestration applications and the significant role it can play in determining the well bottomhole pressure and thus injection rate.  相似文献   
732.
Zn+2 and Ni+2 in a solution were removed by biosorption in a fixed bed of wheat straw Triticum aestivum. The removal rate and the mass transfer coefficient for Zn+2 and Ni+2 were found to be proportional to the liquid superficial velocity to the power of 0.31 for the range of the particle Reynolds number from 18 to 445 (equivalent liquid rates of 0.00070–0.0175 m3 m−2 s−1). This agrees well with reported literature for mass transfer in a packed bed of solid particles under a laminar flow regime. Effect of the solution pH, temperature and the particle size (0.5, 1.0, 1.5 and 2.0 in.) on biosorption of Zn+2 and Ni+2 was also investigated. Biosorption of both Zn+2 and Ni+2 increased significantly with the solution pH from 4.0 to 7.0. On the other hand, Zn+2 and Ni+2 removal appeared to be insensitive to liquid temperature from 25 to 30 °C. Nevertheless, a 25% increase in the percentage removal of metal ions was observed with further increase of liquid temperature from 30 to 35 °C. However, the biosorbent particle size did not seem to have a systematic effect on the biosorption of Zn+2 and Ni+2. In addition, biosorption of Zn+2 was not affected considerably by co-adsorption of the bimetal solution while biosorption of Ni+2 decreased about 14%.  相似文献   
733.
BACKGROUND, AIM AND SCOPE: Pesticides are often found in soil as a result of their application to control pests. They can be transported on soil particles to surface waters or they can lixiviate and reach other environmental compartments. Soil modification with amendments, such as sewage sludge, and with surfactants, h been proposed to reduce pesticide environmental fate. METHODS: The sorption of atrazine, methidathion and diazinon using the batch technique has been studied on non-modified soil and soil modified with sewage sludge and cationic surfactants, as well as the effect of their addition on soil properties such as organic carbon (OC) content and exchange cations. RESULTS AND DISCUSSION: The OC content of the surfactant modified soils was the highest with the surfactant with the longest hydrocarbon chain (hexadecyltrimethyl ammonium bromide, HDTMA). The results of the OC content run in parallel with the increase in pesticide retention. When the sorption was n malized to soil OC content, the retention induced by addition of HDTMA was still the highest, which is an indication that the organic matter derived from the organic cations is a more effective medium to retain dissolved contaminants, than organic matter from native soil. The addition of sewage sludge to the soil did only result in a slight increase of the soil CEC and, hence, moderately affected the ability of the cationic surfactant to retain the pesticides. CONCLUSIONS: The addition of cationic surfactants to soil would possibly reduce the movement to groundwater of atrazine, methidathion and diazinon. In the case of HDTMA, the decrease in sorption at high surfactant loadings was very slow, being that the surfactant was able to retain the pesticides at concentration values which clearly exceeded the monolayer coverage. RECOMMENDATIONS AND PERSPECTIVES: Contamination by pesticides, which are present in the soil due to their direct input in this medium or to spills or illegal tipping, may be hindered from migration to groundwater by application of a cationic surfactant.  相似文献   
734.
The migration behavior of the actinyl ions U(VI)O22+, Np(V)O2+ and Pu(V,VI)O2(+,2+) in the geosphere is to a large extend controlled by sorption reactions (inner- or outer-sphere adsorption, ion-exchange, coprecipitation/structural incorporation) with minerals. Here NpO2+ adsorption onto calcite is studied in batch type experiments over a wide range of pH (6.0–9.4) and concentration (0.4 μM–40 μM) conditions. pH is adjusted by variation of CO2 partial pressure. Adsorption is found to be pH dependent with maximal adsorption at pH 8.3 decreasing with increasing and decreasing pH. pH dependence of adsorption decreases with increasing Np(V) concentration. EXAFS data of neptunyl adsorbed to calcite and neptunyl in the supernatant shows differences in the Np(V)-O-yl distance, 1.85 ± 0.01 Å for the adsorbed and 1.82 ± 0.01 Å for the solution species. The equatorial environment of the neptunyl in solution shows about 5 oxygen neighbours at 2.45 ± 0.02 Å. For adsorbed neptunyl there are also about 5 oxygen neighbours at 2.46 ± 0.01 Å. An additional feature in the adsorbed species' R-space spectrum can be related to carbonate neighbours, 3 to 6 carbon backscatterers (C-eq) at 3.05 ± 0.03 Å and 3 to 6 oxygen backscatterers (O-eq2) at 3.31 ± 0.02 Å. The differences in the Np(V)-O-yl distance and the C-eq and O-eq2 backscatterers which are only present for the adsorbed species indicate inner-sphere bonding of the adsorbed neptunyl species to the calcite surface. Experiments on adsorption kinetics indicate that after a fast surface adsorption process a continuous slow uptake occurs which may be explained by incorporation via surface dissolution and reprecipitation processes. This is also indicated by the part irreversibility of the adsorption as shown by increased KD values after desorption compared to adsorption.  相似文献   
735.
Bentonite clay is considered as possible backfill material for nuclear waste repositories in crystalline rock. The same material may also be a source of clay colloids, which may act as carriers for actinide ions possibly released from the repository. Depending on the geochemical parameters, these colloids may be retained by interaction with mineral surfaces of the host rock. In the present study interaction of carboxylated fluorescent latex colloids, used as a model for bentonite colloids, with natural Grimsel granodiorite and some of its component minerals is studied by fluorescence microscopy and SEM/EDX. The experiments are carried out by varying the pH from 2–10. Strong adsorption is observed at pH values close to or below the points of zero charge (pHpzc) of the mineral surfaces. The influence of Eu(III), used as a chemical homologue for trivalent actinide ions, on colloid adsorption is investigated. Depending on mineral phase and pH, a significant increase of colloid adsorption is observed in the presence of Eu(III).  相似文献   
736.
Thirteen soils collected from 11 provinces in eastern China were used to investigate the butachlor adsorption. The results indicated that the total organic carbon (TOC) content, clay content, amorphous Fe2O3 content, silt content, CEC, and pH had a combined effect on the butachlor sorption on soil. Combination of the data obtained from the 13 soils in the present study with other 23 soil samples reported by other researchers in the literature showed that Koc would be a poor predictive parameter for butachlor adsorption on soils with TOC content higher than 4.0% and lower than 0.2%. The soils with the ratio of clay content to TOC content (RCO) values less than 60 adsorbed butachlor mainly by the partition into soil organic matter matrix. The soils with RCO values higher than 60 apparently adsorbed butachlor by the combination of the partition into soil organic matter matrix and adsorption on clay surface.  相似文献   
737.
将两性(十二烷基二甲基甜菜碱)修饰磁化炭分别以质量分数0、1%和2%加入嘉陵江流域(川渝段)内苍溪(CX)、南部(NB)、嘉陵(JL)和合川(HC)沿岸土中,考察各混合土样对Cu2+的等温吸附和热力学特征.结果表明:混合土样对Cu2+的最大吸附量为58.36 mmol/kg~366.85 mmol/kg,添加等量两性磁...  相似文献   
738.
● Organic matter content significantly affected adsorption of E2/EE2 on saline soil. ● EE2 possessed higher competition intensity for adsorption sites than E2. ● The adsorption of E2/EE2 on saline soil was a spontaneous exothermic process. ● Desorption capacity of EE2/E2 accounted for 40%/78% of the total adsorption capacity. Soil organic matter content was the main driving factor affecting adsorption and desorption process of 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) on saline soil. The adsorption and desorption of E2 and EE2 on three saline soils showed the similar behavior that soil with the highest organic content possessed the highest adsorption capacity and the lowest desorption capacity for E2 and EE2. The adsorption capacity of untreated soil samples (with organic matter) was larger than that of soil samples without organic matter. For soil with the largest adsorption capacity, adsorption capacity of E2/EE2 on the untreated soil and soil colloid (with organic matter) respectively reached 0.15/0.30 μg/g and 0.16/0.33 μg/g while the soil and soil colloid without organic matter hardly adsorbed pollutants. The adsorption capacity of E2/EE2 at the initial concentration of 100 μg/L was 25/15 times higher than that at the initial concentration of 5 μg/L. E2 and EE2 had the same adsorption sites on saline soil while EE2 possessed higher competition intensity for adsorption sites than E2. Pseudo-first-order model (R2 = 0.995–0.986) and Langmuir model (R2 = 0.989–0.999) could better fit the adsorption process of E2 or EE2. The thermodynamic study further showed that the adsorption of E2/EE2 on saline soil was a spontaneous exothermic process. The desorption capacity of EE2/E2 accounted for 40%/78% of the total adsorption capacity to possibly exert potential risk to the groundwater. The variation of the salinity led to the variation of soil organic carbon which subsequently changed the adsorption and desorption behaviors of endocrine disrupting chemicals in coastal saline soil. This study provides a new insight on the interfacial behavior of endocrine disrupting chemicals on saline soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号