首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   5篇
综合类   7篇
基础理论   6篇
污染及防治   5篇
社会与环境   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2013年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2006年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
12.
Cadmium(Cd) uptake by plants or benthic organisms largely depends on its bioavailability in sediments,so it is necessary to understand Cd bio availability for determining its ecological risks in riverine sediments.Pore water is easily disturbed during sample collection,indicating that there was a shortage of traditional methods for investigating Cd bio availability.Here,sediment cores were collected from rivers,after which sequential extraction and diffusive gradients in thin films(DGT) method were employed to determine Cd potential bio availability in the sediments and pore water.We found that Cd concentrations measured by DGT were lower than that in pore water profiles,and Cd distribution in various fractions changed remarkably.Pearson correlation analysis showed significant positive correlations between Cd concentrations measured by DGT and total Cd concentrations(r~2=0.76),exchangeable and weak acid soluble fraction(r~2=0.68),ferromanganese fraction(r~2=0.72) and bound organic matter or oxidizable fraction(r~2=0.54).However,the correlation was relatively low between Cd concentrations measured by DGT and that in pore water profiles(r~2=0.26).These results demonstrated that DGT method could provide more accurate information of Cd bio availability in sediment profiles than traditional methods.  相似文献   
13.
Sediment oxygen demand (SOD) is a major contributor to hypolimnetic oxygen depletion and the release of internal nutrient loading. By measuring the SOD in experimental chambers using in both dissolved oxygen (DO) depletion and diffusional oxygen transfer methods, a model of SOD for a sediment bed with water current-induced turbulence was presented. An experimental study was also performed using near-sediment vertical DO profiles and correlated hydraulic parameters stimulated using a computational fluid dynamics model to determine how turbulences and DO concentrations in the overlying water affects SOD and diffusive boundary layer thickness. The dependence of the oxygen transfer coefficient and diffusive boundary layer on hydraulic parameters was quantified, and the SOD was expressed as a function of the shear velocity and the bulk DO concentrations. Theoretical predictions were validated using microelectrode measurements in a series of laboratory experiments. This study found that flow over the sediment surface caused an increase in SOD, attributed to enhanced sediment oxygen uptake and reduced substances fluxes, i.e., for a constant maximum biological oxygen consumption rate, an increased current over the sediment could increase the SOD by 4.5 times compared to stagnant water. These results highlight the importance of considering current-induced SOD increases when designing and implementing aeration/artificial mixing strategies.  相似文献   
14.
The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (CDGT) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO22+, uranyl carbonate complexes and UO2PO4. The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants.  相似文献   
15.
Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m−2 d−1. Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO2 concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m−3, but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO2 advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m−3, remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S1 and semi-diurnal S2 periodic components. At the advection-dominated points, radon concentration did not exhibit S1 or S2 components. At the reference points, however, the S2 component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S1 component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle.  相似文献   
16.
The diffusive oxygen uptake (DOU) of sediments inhabited by Chironomus riparius and Tubifex tubifex was investigated using a planar oxygen optode device, and complemented by measurements of bioturbation activity. Additional experiments were performed within contaminated sediments to assess the impact of uranium on these processes. After 72 h, the two invertebrate species significantly increased the DOU of sediments (13-14%), and no temporal variation occurred afterwards. Within contaminated sediments, it was already 24% higher before the introduction of the organisms, suggesting that uranium modified the sediment biogeochemistry. Although the two species firstly reacted by avoidance of contaminated sediment, they finally colonized it. Their bioturbation activity was reduced but, for T. tubifex, it remained sufficient to induce a release of uranium to the water column and an increase of the DOU (53%). These results highlight the necessity of further investigations to take into account the interactions between bioturbation, microbial metabolism and pollutants.  相似文献   
17.
The high degree of heterogeneity within sediments can make interpreting one-dimensional measurements difficult. The recent development and use of in situ techniques that measure two-dimensional distributions of porewater solutes have facilitated investigation of the role of spatial heterogeneity in sediment biogeochemistry. A colourimetric diffusive equilibration in thin films method has been developed that allows two-dimensional, high-resolution measurement of reactive phosphate in sediment porewaters. A method detection limit of 0.22 μM, an effective upper limit of ∼1000 μM and relative standard deviations typically below 5% were achieved. This method was evaluated by deployment in seagrass (Zostera capricorni) colonised sediments, as part of combined probes with similar colourimetric methods for sulfide and iron(II). The two-dimensional, high resolution distributions obtained provide a highly representative measurement of the co-distributions of porewater solutes, allowing heterogeneous features and biogeochemical processes to be observed and interpreted. Microniches of high phosphate concentration >100 μM were observed throughout the distributions and were interpreted to be due to localised zones of rapid organic matter mineralisation, possibly using electron acceptors other than iron(III) oxyhydroxides (e.g. aerobic respiration) as often they did not correspond with microniches of higher Fe(II) concentration.  相似文献   
18.
Northern Latium (Italy) is an area where the Rn risk rate is potentially high because of the extensive outcropping of Neogene U-rich volcanics and the presence of major active tectonic lineaments. The lack of data on Rn risk rates in that area, which is undergoing major urban and industrial development, has prompted this study. It proposes a methodology to evaluate the maximum potential diffusive Rn flux from soils based on the measurement of 226Ra, 232Th and 40K activities by γ-ray spectrometry, and the measurement of main soil parameters influencing the Rn emanation. This methodology provides a simple, reliable and low-cost tool for drawing up radon flux maps useful to both public planners and private individuals, who want to operate safely in the study area. The proposed methodology may also be applied to other geographic areas outside the prescribed study area.  相似文献   
19.
The present work relates to galvanized structures with several years of time life subjected to atmospheric corrosion, like galvanized high tension steel pylons. The mass and fate of zinc released is evaluated both via empirical and experimental procedures. The corrosion rate determination requested atmospheric condition characterization, especially for SO 2 concentration and experimental activities focused on soil sampling around pylons. The soil zinc content, total and exchangeable, is determinates by different analytical procedures. The zinc diffusion in environment and the zinc extension under the top soil is evaluated using 1-dimensional mathematical model for miscible species in porous soil.  相似文献   
20.
Total contents of metals in soil and sediments on the Tibetan Plateau of China have been widely analyzed, but existing information is insufficient to effectively evaluate metal ecological risk because of a lack of metal bioavailability data. In this study, distribution, potential risk, mobility and bioavailability of metals in sediments of Lake Yamdrok Basin in Tibet of China were explored by combined use of total digestion, sequential extraction and the diffusive gradient in thin-films (DGT). Average concentrations of Cr, Ni, Cu, Zn, As, Cd and Pb in surface sediments were 31.25, 30.31, 22.00, 45.04, 31.32, 0.13 and 13.39 mg/kg, respectively. Higher levels of metals were found near the inflowing rivers. Residual form was dominant in Cr, Ni, Zn, Cd and Pb, and reducible form was dominant in As and Cd. Metals in surface sediments showed a low enrichment degree overall, but Cd and As had higher ecological risk levels than the other metals. Furthermore, there was a larger average proportion of exchangeable form of As (20.4%) and Cd (9.0%) than the other metals (1.7%-3.3%), implying their higher mobility and release risk. Average DGT-labile concentrations of Cr, Ni, Cu, Zn, As, Cd and Pb were 0.5, 4.5, 0.7, 25.1, 60.0, 0.22 and 1.0 µg/L, respectively. The DGT-labile As was significantly correlated with extractable As forms (p< 0.01), suggesting that extractable As in sediments acts as a “mobile pool” for bioavailable As. These results suggest potential risks of As and Cd, especially As, deserve further attention in Lake Yamdrok Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号