首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1823篇
  免费   169篇
  国内免费   104篇
安全科学   116篇
废物处理   12篇
环保管理   544篇
综合类   531篇
基础理论   282篇
环境理论   54篇
污染及防治   21篇
评价与监测   96篇
社会与环境   305篇
灾害及防治   135篇
  2024年   3篇
  2023年   58篇
  2022年   41篇
  2021年   55篇
  2020年   71篇
  2019年   110篇
  2018年   109篇
  2017年   118篇
  2016年   110篇
  2015年   121篇
  2014年   61篇
  2013年   194篇
  2012年   112篇
  2011年   114篇
  2010年   91篇
  2009年   65篇
  2008年   66篇
  2007年   62篇
  2006年   73篇
  2005年   48篇
  2004年   62篇
  2003年   49篇
  2002年   37篇
  2001年   34篇
  2000年   62篇
  1999年   55篇
  1998年   17篇
  1997年   23篇
  1996年   11篇
  1995年   6篇
  1994年   6篇
  1993年   18篇
  1992年   3篇
  1991年   8篇
  1990年   9篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有2096条查询结果,搜索用时 171 毫秒
201.
以孢粉、植硅体等为代表的植物微体遗存由于其分布广泛,容易保存,可反映母体植物类型的优点,在第四纪环境研究中得到了广泛应用。本文介绍了植物微体遗存的概念、常见类型,以及它们的提取方法和原理,综述了利用植物微体遗存重建古环境的传统方法和近年来发展的几种古植被与古气候定量重建方法,最后简述了植物微体遗存在年代测定、稳定同位素分析研究上的应用进展与实例。文末指出了现有研究方法的问题与不足,并对今后的多代用指标的综合研究提出了展望。  相似文献   
202.
This paper analyses how new information shapes public perception of a controversially discussed technology over time. The test case analysed in this paper is solar radiation management (SRM), a potentially risky, environmental engineering technology, which aims to fight climate change by the injection of sulphate aerosols into the stratosphere. Using panel survey data, we show that most respondents initially show strong negative emotions towards SRM and reject the technology. However, public perception is not stable over time as emotions cool off and acceptance increases. The increase in acceptance is greater, the longer the cooling-off period between two surveys. Furthermore, we show that the cooling-off effect is more pronounced for more impulsive respondents.  相似文献   
203.
近五十年来赤峰气候变化及其对生态环境的影响   总被引:2,自引:0,他引:2  
利用赤峰地区近五十年来气温、降水等资料,分析了赤峰地区近五十年来气候的变化趋势,探讨气候变化带来的生态影响。结果表明:赤峰地区20世纪80年代以来进入变暖期,强对流天气频率加大,多暴雨暴雪,出现气候的不稳定性。年平均气温有所上升,主要表现为冬季平均气温上升。从不同层面分析气温、降水、日最高温度、最低气温、平均温度的变化,以及它们对水资源、土壤、植被、农业生产等生态环境的影响。为实施宏观决策、保护环境、利用气候资源等提供科学依据。  相似文献   
204.
西藏“一江两河”中部流域地区是藏民族文化的发祥地,腹心地区。区内独特的生态环境、奇异的自然风光、丰富的自然资源,21世纪将进入一个新的发展时期。但也存在诸多的生态环境等问题。本文从环境保护的角度出发,提出建设相对稳定人工生态系统,实现可持续发展的途径。   相似文献   
205.
Strategies to conserve biodiversity need to include the monitoring, modelling, adaptation and regulation of the composition of the atmosphere. Atmospheric issues include climate variability and extremes; climate change; stratospheric ozone depletion; acid deposition; photochemical pollution; suspended particulate matter; and hazardous air pollutants. Coarse filter and fine filter approaches have been used to understand the complexity of the interactions between the atmosphere and biodiversity. In the first approach, climate-based models, using GIS technology, helped create future biodiversity scenarios under a 2 × CO2 atmosphere. In the second approach, the SI/MAB forest biodiversity monitoring protocols helped calibrate the climate-forest biodiversity baseline and, as global diagnostics, helped identify where the biodiversity was in equilibrium with the present climate. Forest climate monitoring, an enhancing protocol, was used in a co-location approach to define the thermal buffering capacity of forest ecosystems and their ability to reduce and ameliorate global climate variability, extremes and change.  相似文献   
206.
气候条件对中国水稻稻飞虱为害规律的影响   总被引:30,自引:4,他引:30  
稻飞虱除了在海南、广东、广西、二南南部冬季有少量虫源存活外,在中国其它大部分地区常年均不能越冬,春秋季初始虫源主要来自于国外。越南是中国稻飞虱的主要初始虫源地,中国稻飞虱直接来自越南红河三角洲,而最初的虫源地为泪公河三角洲。入境后的稻飞虱每年均出现有规律的5次由南向北和3次由北向南的迁飞过程。暖冬使越南等境外或中国稻飞虱越冬区的稻飞虱迁入期提前,为害期延长.中国稻飞虱发生较重的年份大多出现在3—5月副高较强的年份.厄尔尼诺年的次年中国稻飞虱有可能严重发生。  相似文献   
207.
ABSTRACT: An evaluation was conducted on three forested upland watersheds in the northeastern U.S. to test the suitability of TOPMODEL for predicting water yield over a wide range of climatic scenarios. The analysis provides insight of the usefulness of TOPMODEL as a predictive tool for future assessments of potential long-term changes in water yield as a result of changes in global climate. The evaluation was conducted by developing a calibration procedure to simulate a range of climatic extremes using historical temperature, precipitation, and streamfiow records for years having wet, average, and dry precipitation amounts from the Leading Ridge (Pennsylvania), Fernow (West Virginia), and Hubbard Brook (New Hampshire) Experimental Watersheds. This strategy was chosen to determine whether the model could be successfully calibrated over a broad range of soil moisture conditions with the assumption that this would be representative of the sensitivity necessary to predict changes in streamfiow under a variety of climate change scenarios. The model calibration was limited to a daily time step, yet performed reasonably well for each watershed. Model efficiency, a least squares measure of how well a model performs, averaged between 0.64 and 0.78. A simple test of the model whereby daily temperatures were increased by 1.7°C, resulted in annual water yield decreases of 4 to 15 percent on the three watersheds. Although these results makes the assumption that the model components adequately describe the system, this version of TOPMODEL is capable to predict water yield impacts given subtle changes in the temperature regime. This suggests that adequate representations of the effects of climate change on water yield for regional assessment purposes can be expected using the TOPMODEL concept.  相似文献   
208.
ABSTRACT: As part of the National Assessment of Climate Change, the implications of future climate predictions derived from four global climate models (GCMs) were used to evaluate possible future changes to Pacific Northwest climate, the surface water response of the Columbia River basin, and the ability of the Columbia River reservoir system to meet regional water resources objectives. Two representative GCM simulations from the Hadley Centre (HC) and Max Planck Institute (MPI) were selected from a group of GCM simulations made available via the National Assessment for climate change. From these simulations, quasi-stationary, decadal mean temperature and precipitation changes were used to perturb historical records of precipitation and temperature data to create inferred conditions for 2025, 2045, and 2095. These perturbed records, which represent future climate in the experiments, were used to drive a macro-scale hydrology model of the Columbia River at 1/8 degree resolution. The altered streamflows simulated for each scenario were, in turn, used to drive a reservoir model, from which the ability of the system to meet water resources objectives was determined relative to a simulated hydrologic base case (current climate). Although the two GCM simulations showed somewhat different seasonal patterns for temperature change, in general the simulations show reasonably consistent basin average increases in temperature of about 1.8–2.1°C for 2025, and about 2.3–2.9°C for 2045. The HC simulations predict an annual average temperature increase of about 4.5°C for 2095. Changes in basin averaged winter precipitation range from -1 percent to + 20 percent for the HC and MPI scenarios, and summer precipitation is also variously affected. These changes in climate result in significant increases in winter runoff volumes due to increased winter precipitation and warmer winter temperatures, with resulting reductions in snowpack. Average March 1 basin average snow water equivalents are 75 to 85 percent of the base case for 2025, and 55 to 65 percent of the base case by 2045. By 2045 the reduced snowpack and earlier snow melt, coupled with higher evapotranspiration in early summer, would lead to earlier spring peak flows and reduced runoff volumes from April-September ranging from about 75 percent to 90 percent of the base case. Annual runoff volumes range from 85 percent to 110 percent of the base case in the simulations for 2045. These changes in streamflow create increased competition for water during the spring, summer, and early fall between non-firm energy production, irrigation, instream flow, and recreation. Flood control effectiveness is moderately reduced for most of the scenarios examined, and desirable navigation conditions on the Snake are generally enhanced or unchanged. Current levels of winter-dominated firm energy production are only significantly impacted for the MPI 2045 simulations.  相似文献   
209.
ABSTRACT: We apply a physically based lake model to assess the response of North American lakes to future climate conditions as portrayed by the transient trace-gas simulations conducted with the Max Planck Institute (ECHAM4) and the Canadian Climate Center (CGCM1) atmosphere-ocean general circulation models (A/OGCMs). To quantify spatial patterns of lake responses (temperature, mixing, ice cover, evaporation) we ran the lake model for theoretical lakes of specified area, depth, and transparency over a uniformly spaced (50 km) grid. The simulations were conducted for two 10-year periods that represent present climatic conditions and those around the time of CO2 doubling. Although the climate model output produces simulated lake responses that differ in specific regional details, there is broad agreement with regard to the direction and area of change. In particular, lake temperatures are generally warmer in the future as a result of warmer climatic conditions and a substantial loss (> 100 days/yr) of winter ice cover. Simulated summer lake temperatures are higher than 30°C over the Midwest and south, suggesting the potential for future disturbance of existing aquatic ecosystems. Overall increases in lake evaporation combine with disparate changes in A/OGCM precipitation to produce future changes in net moisture (precipitation minus evaporation) that are of less fidelity than those of lake temperature.  相似文献   
210.
ABSTRACT: The U.S. Army Corps of Engineers conducted an assessment of Great Lakes water resources impacts under transient climate change scenarios. The integrated model linked empirical regional climate downscaling, hydrologic and hydraulic models, and water resource use sub-models. The water resource uses include hydropower, navigation, shoreline damages, and wetland area. The study is unique in that both steady-state 2°CO2 and transient global circulation model (GCM) scenarios were used and compared to each other. The results are consistent with other impact studies in that high scatter in regional climate among the GCM scenarios lead to high uncertainty in impacts. Nevertheless, the transient scenarios show that in the near-term (approximately 20 years) significant changes could occur. This result only adds to the urgency of creating more flexible and robust management of water resources uses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号