首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   20篇
  国内免费   45篇
安全科学   8篇
环保管理   25篇
综合类   117篇
基础理论   18篇
污染及防治   2篇
评价与监测   4篇
社会与环境   23篇
灾害及防治   11篇
  2023年   5篇
  2022年   9篇
  2021年   8篇
  2020年   13篇
  2019年   5篇
  2018年   13篇
  2017年   6篇
  2016年   12篇
  2015年   15篇
  2014年   7篇
  2013年   12篇
  2012年   16篇
  2011年   11篇
  2010年   13篇
  2009年   9篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有208条查询结果,搜索用时 328 毫秒
161.
青海湖流域表层土壤环境背景值及其影响因素   总被引:3,自引:0,他引:3       下载免费PDF全文
为了评价青海湖流域土壤的环境背景值,2008~2009 年分别采集流域表层土壤样品共 273 个,采用X 荧光光谱仪分析了29 种元素(Na、Mg、Al、Si、K、Ca、Fe、P、Ti、V、Cr、 Mn、Co、Ni、Cu、Zn、Ga、As、Rb、Sr、Y、Zr、Nb、Ba、Pb、La、Ce、Nd 和 Th)的含量, 根据ArcGis 地统计工具ESDA 模块,确定了表层土壤背景值及其范围。结果表明:总体上青海 湖流域表层土壤各元素含量偏低,但Ca 元素含量明显偏高,Zn 元素含量明显偏低;流域风化程 度是初等风化脱Ca、Na 阶段向中等风化脱K 阶段转变,风化环境处于冷干向暖湿转变,风化的 主控因素是母岩和温度;大多数元素含量的变化都与沉积物中粘土(<4 μm)含量的变化呈一致 性,而与砂(>63 μm)的含量变化呈反相关关系,这些元素多赋存在细颗粒物中,少部分元素容 易赋存于粗颗粒中;常量元素的活动性的顺序为:K2O > CaO > SiO2 > MgO > Na2O > Al2O3 > TiO2 > P2O5 > Fe2O3 > MnO;微量元素的活动性的顺序为:Ni > V > Pb > Ba > Sr > Zr > Ce > Rb > Co > Zn > La > Y > Nd > Cu > Th > Nb。  相似文献   
162.
生态补偿对象的空间选择研究是生态补偿机制的基础性和支撑性研究,对建立高效合理的生态补偿机制具有十分关键的作用。目前国内在生态补偿的理论和实践研究中很少专门研究补偿对象的选择问题,这种不考虑空间异质性对整个补偿区域实施统一的标准补偿势必会影响到补偿的效率。有鉴于此,基于补偿资金效率考虑,构建以土地所有者提供的生态系统服务、土地所有者的参与成本和生态系统服务受损风险为参数的空间选择模型,以甘南藏族自治州草地生态系统水源涵养服务为例,乡镇为基本研究单元,采用聚类分析法将全州划为五大等级补偿区:优先补偿区、次级优先补偿区、次级补偿区、临界补偿区和潜在补偿区或可能补偿区。对各级补偿区的特征分析结果表明:①草地生态系统的优先补偿主体主要分布在纯牧区,而非优先补偿区主要分布在半农半牧区、林业区和农业区;②基于补偿资金效率考虑的补偿优先度与草地生态系统退化风险呈现高度的吻合状态,草地生态系统的优先补偿区又是高退化风险区(生态脆弱区);③草地生态系统的补偿效率与生态重要性呈现出吻合的状态,即草地生态系统的优先补偿区又是重要生态功能区;④甘南州近17%的草地为低效率和无效率补偿区,也是非生态脆弱区和非重要生态功能区,基于生态脆弱性、生态重要性和补偿效率考虑,这部分草地可暂时给予较低标准的补偿。  相似文献   
163.
光能利用效率(light use efficiency,LUE)是指初级生产力与植被冠层吸收的光合有效辐射(absorbed photosynthetically active radiation,APAR)之比,对LUE的准确定量化模拟是定量化模拟初级生产力的基础。研究利用一个基于通量观测的LUE模型(EC-LUE)模拟了2004-2005年藏北高寒草甸的LUE,该模型的参数只有蒸散比(Evaporative Fraction,EF)和气温(air temperature,Ta),EF和Ta分别为最大光能利用效率(maximum light use efficiency,LUEmax)的水分和温度胁迫因子,在研究中LUEmax取0.85 g C/MJ。EF和Ta对LUEmax的胁迫作用存在两种方式:连乘方式和最小限制因子方式,这两种方式模拟的光能利用效率分别记为LUEmultipEC和LUEminEC,并与通量观测数据估算的LUE(LUEEC)进行了比较。结果表明,LUEminEC显著高估了LUEEC,而LUEEC和LUEmultipEC差异不显著;LUEmultipEC和LUEminEC分别解释了89%以上LUEEC的季节变化;EF显著地解释了土壤表层含水量、 比湿,且在一定程度上解释了相对湿度的季节变化;相对于水分胁迫因子,温度胁迫因子更能够解释LUEEC的季节变化。因此,EC-LUE模型可以定量化高寒草甸LUE的季节变化,同时EF可以定量化高寒草甸生态系统水分状况的季节变化。  相似文献   
164.
以3D-Barnes方案插值的新一代天气雷达反射率因子等高平面资料,用垂直累积液态含水量的理论模式计算雹云单体在降雹过程中的VIL,再用MAX函数逐个提取最大VIL(简称:VILmax),采用统计和回归处理技术,对2004~2006年5~8月青藏高原东北侧局地雹云单体的VILmax与对应地面冰雹最大雹径(简称:Rmax)之间的关系进行详细分析。结果表明,青藏高原东北侧局地冰雹Rmax与对应单体VILmax之间存在明显的正相关关系。  相似文献   
165.
长期以来,学者对中国农村贫困的研究侧重于经济贫困方面,对能源贫困的研究相对不足,而能源贫困恰恰是制约农村地区发展和农户生计资产改善的主要因素。论文从农户的视角出发,借鉴巴西、印度等发展中国家的能源贫困线标准,根据农户调查和访谈,对中国农村能源贫困线进行了综合考量,并最终确定为户均每年消费400 kgce;为科学测度能源贫困状况,提出从能源贫困的广度、深度、差异度三个维度进行定量分析,并构建了各维度的测度方法;以云南省怒江州为案例,利用564 份农户调查问卷,分析了怒江州的能源贫困状况,研究发现,怒江州能源贫困的广度为0.66,能源贫困的深度为0.40,能源贫困的差异度为0.17,能源贫困的综合指数(Sen指数)为0.37,说明怒江州的能源贫困状况是比较严重的,并据此提出了具有针对性的政策建议。  相似文献   
166.
《Environmental Hazards》2013,12(2):122-136
Based on the results of questionnaires issued to 202 local residents in the Mount Yulong Snow region, southeastern Tibetan Plateau, this study analyzes mountain residents’ perspectives on climate change and its impacts, their strategies to adapt to climate change impacts, including their willingness or otherwise to become ecological migrants, and some of the factors that influence their perceptions. Overall, local perception of climate change and its impacts corresponds to the patterns of observed climate change revealed by climate records. The intensity of climate change perception shows a highly significant correlation with residents’ age and villages’ elevation gradient. Most respondents did not believe that climate change affected crop growing and their yields, but the number of crop insect pests was thought to be increasing slightly and the crop growth period to be extending. Nearly all respondents believed that climate change seriously affects the mountain tourism economy, and their way of life and spiritual world. Persistent drought in recent years has forced mountain dwellers to adjust industrial structure, save water in the agricultural economy, participate in mountain tourism and work outside the home in order to adapt to climate change impacts and supplement their meager farm incomes. Additionally, residents expect to receive government compensation and relief to mitigate natural disaster damage.  相似文献   
167.
Soil erosion has a critical effect on ecological security and socioeconomics, which may deteriorate ecosystem services and common human well-being. The revised universal soil loss equation (RUSLE) was applied to assess soil erosion from 1984 to 2013 in the Tibetan Plateau and analyzed the temporal and spatial variation of soil erosion intensity. Furthermore, the temporal and spatial variation rates of soil erosion were explored across different ecosystems. The results indicated that the annual soil erosion fuctuated in the Tibetan Plateau, the soil erosion intensity decreased from south to north, and the most serious soil erosion was mainly distributed in the southern Tibetan Plateau (Xigaze and Changdu regions, Lhasa, and north of the Shannan region). The soil erosion intensity was higher in shrub, alpine meadow, and sparse vegetation ecosystems. The highest soil erosion was found in alpine meadow (2.17 × 1010 t), followed by alpine grassland (1.59 × 1010 t) and sparse vegetation (1.30 × 1010 t) ecosystems. Meanwhile, although the most serious soil erosion intensity was found in the regions of 3 000-4 000 m altitude, the soil erosion was mainly observed in the regions of 4 000-5 000 m altitude. In the three most recent decades, annual soil erosion decreased at a rate of-1.78 × 108 t/a. Additionally, soil erosion mainly increased in south of the Qiangtang Plateau and in the periphery of the Qaidam basin. Decreased soil erosion was mainly found along the Hengduan Mountains, central Himalayas. Although the increased annual normalized difference vegetation index (NDVI) had positive effects for soil protection, changes in soil erosion was mainly controlled by the change of annual precipitation. Thus, the fragility of ecological systems and increased rainfall erosivity accounted for the obviously increased soil erosion in the alpine grassland ecosystem (1.19 × 10 t/a). However, increased ecosystem stability and decreased rainfall erosivity contributed to the decreased soil erosion in forest and shrub ecosystems, by-0.77 × 10 t/a and-1.65 × 10 t/a, respectively. The slightly decreased rainfall erosivity accounted for a decrease of soil erosion in the sparse vegetation ecosystem (-0.44 × 10 t/a). Meanwhile, soil erosion has decreased in the alpine meadow ecosystem over the past 30 years, which may owing to the relatively higher NDVI that neutralized the increase of rainfall erosivity to some extent. This study revealed serious soil erosion regions and ecosystems in the Tibetan Plateau and explored possible reasons for variations in soil erosion in different ecosystems, which may provide a scientific reference for soil erosion conservation and control in the near future. © 2018 Science Press. All rights reserved.  相似文献   
168.
森林采伐对地表藓类种群的发育具有重要影响,但很少有人评估这种影响后迹地上的藓类种群状况.本研究调查了四川壤塘县4个系列采伐迹地和附近原始云杉林下3种林地优势藓类种群[锦丝藓(Actinothuidium hookeri)、塔藓(Hylocomium splendens)和大羽藓(Thuidium cymbifolium)]的发生频率和盖度、生物量以及维管束植物盖度和凋落物盖度,通过方差分析检验比较分析了3个藓类种群的盖度和生物量在不同采伐迹地及原始林之间的差异,评估了其自然发展趋势,揭示了维管束植物结构参数与藓类种群盖度和生物量之间的相互关系.发现:1)3种藓类种群的盖度和生物量在采伐迹地和附近原始林间有显著差异,但在系列采伐迹地之间没有明显差异,证实森林采伐后林生地表藓类种群显著衰退,随着迹地自然恢复进程这些藓类种群并未能逐渐恢复;2)微环境尺度上的藓类盖度和生物量在系列采伐迹地之间有较大的波动,Spearman相关分析显示乔木和草本层盖度是影响藓类种群生物量的主要因子.综合分析表明,采伐导致的环境变化以及藓类自身的牛态适应性和繁殖策略综合决定着藓类种群的自然恢复能力;如果仅仅依靠迹地自然恢复过程,顶极藓类种群(塔藓和锦丝藓)是难以自然复壮的.图6表4参44  相似文献   
169.
针对昌吉州近几年大规模开荒带来的一系列生态环境问题,提出了加强土地资源开发项目环境管理的建议与对策。  相似文献   
170.
Introduction: The final failure in the causal chain of events in 94% of crashes is driver error. It is assumed most crashes will be prevented by autonomous vehicles (AVs), but AVs will still crash if they make the same mistakes as humans. By identifying the distribution of crashes among various contributing factors, this study provides guidance on the roles AVs must perform and errors they must avoid to realize their safety potential. Method: Using the NMVCCS database, five categories of driver-related contributing factors were assigned to crashes: (1) sensing/perceiving (i.e., not recognizing hazards); (2) predicting (i.e., misjudging behavior of other vehicles); (3) planning/deciding (i.e., poor decision-making behind traffic law adherence and defensive driving); (4) execution/performance (i.e., inappropriate vehicle control); and (5) incapacitation (i.e., alcohol-impaired or otherwise incapacitated driver). Assuming AVs would have superior perception and be incapable of incapacitation, we determined how many crashes would persist beyond those with incapacitation or exclusively sensing/perceiving factors. Results: Thirty-three percent of crashes involved only sensing/perceiving factors (23%) or incapacitation (10%). If they could be prevented by AVs, 67% could remain, many with planning/deciding (41%), execution/performance (23%), and predicting (17%) factors. Crashes with planning/deciding factors often involved speeding (23%) or illegal maneuvers (15%). Conclusions: Errors in choosing evasive maneuvers, predicting actions of other road users, and traveling at speeds suitable for conditions will persist if designers program AVs to make errors similar to those of today’s human drivers. Planning/deciding factors, such as speeding and disobeying traffic laws, reflect driver preferences, and AV design philosophies will need to be consistent with safety rather than occupant preferences when they conflict. Practical applications: This study illustrates the complex roles AVs will have to perform and the risks arising from occupant preferences that AV designers and regulators must address if AVs will realize their potential to eliminate most crashes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号