首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   0篇
  国内免费   19篇
安全科学   4篇
废物处理   31篇
环保管理   12篇
综合类   47篇
基础理论   4篇
污染及防治   63篇
评价与监测   20篇
社会与环境   1篇
  2023年   4篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   12篇
  2014年   13篇
  2013年   20篇
  2012年   11篇
  2011年   14篇
  2010年   6篇
  2009年   9篇
  2008年   16篇
  2007年   7篇
  2006年   12篇
  2005年   7篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   8篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有182条查询结果,搜索用时 250 毫秒
161.
In order to increase the water and fertilizer use efficiency and decrease the losses of water and fertilizer solutes (N and P), it is necessary to assess the influence of level of fertilization and irrigation schedule on movement and balance of water and fertilizers in the root zone. With this goal, the reported study was undertaken to determine the effect of fertilization and irrigation schedule on water movement and fertilizer solute transport in wheat crop field in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop of cultivar Sonalika (Triticum aestivum L.) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment consisted of four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments were: I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments during the experiment were: F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1; F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. The results of the investigation revealed that low volume high frequency irrigation results in higher deep percolation losses than the low frequency high volume irrigation with different levels of fertilization for wheat crop in coarse lateritic soil, whereas different levels of fertilization did not significantly affect soil water balance of the wheat crop root zone during all the irrigation schedules. Level of fertilization and irrigation schedule had significant effect on nitrogen leaching loss whereas irrigation schedules had no significant effect on nitrogen uptake under different levels of fertilization. On the other hand, the leaching loss of phosphorus was not significantly influenced by the irrigation schedule and level of fertilization of wheat crop. This indicated that PO4–P leaching loss was very low in the soil solution as compared to nitrogen due to fixation of phosphorus in soils. From the observed data of nitrogen and phosphorus use efficiency, it was revealed that irrigation schedule with 40% maximum allowable depletion of available soil water with F2 fertilizer treatment (N:P2O5:K2O as 80:40:40 kg ha−1) was the threshold limit for wheat crop with respect to nitrogen and phosphorus use, crop yield and environmental pollution.  相似文献   
162.
Direct and indirect nitrous oxide (N2O) emissions and leaching losses from an intensively managed grazed pasture in the Ythan catchment, Aberdeenshire, UK, were measured and compared over a 17-month period. Simultaneous measurements of farm-wide leaching losses of N2O were also made and catchment-wide fluxes were estimated from existing N leaching data. The relative importance of direct and indirect N2O fluxes at the field, farm and catchment scale was then assessed. At the field scale we found that direct N2O emissions were low (1.2 kg N ha−1 year−1, 0.6% of N input) with indirect N2O emissions via drainage waters comprising a significant proportion (25%) of total N2O emissions. At the whole-farm scale, the N2O-N emission factor (0.003) for leached NO3-N (EF5-g) was in line with the IPCC's recent downward revision. At the catchment scale, a direct N2O flux of 1.9 kg N ha−1 year−1 and an indirect flux of 0.06 kg N2O-N ha−1 year−1 were estimated. This study lends further support to the recent downward revision of the IPCC emission factor for N2O arising from leached N in surface and ground waters (EF5-g) and highlights the need for multiple point sampling to ensure that the importance of indirect N2O losses via drainage waters is not misrepresented at the farm and catchment scales.  相似文献   
163.
燃煤飞灰在堆放、填埋过程中,固定于灰中的汞可能被再次释放,而带来二次污染。为研究飞灰中汞对环境的影响,本研究参照国标规定的渗滤方法和美国毒性特征浸出程序,对飞灰中汞的渗滤特性进行研究,即研究不同类型酸浸取液、浸取液pH值以及液固比对汞渗滤特性的影响。不同酸的浸取试验结果表明:硝酸的汞渗出浓度最大,硫酸最小,经化学动力学分析是由于不同类型酸对于玻璃体中各种氧化物溶解能力的差异性所致。采用硫酸渗滤时,出现反常的渗滤特征,并发现该现象与飞灰二次相生成物有关。滤液汞浓度随浸取液pH的增大成指数曲线下降趋势;随液固比增加,滤液汞浓度呈单峰分布,经化学动力学分析表明氢离子与硅铝玻璃体的配比是产生这一现象的主要原因;本研究对于燃煤汞污染的深度控制及治理方面有指导意义。  相似文献   
164.
Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono- and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5 mg/L Ca(ClO)2. By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water (< 10 μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 μg/L–0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water.  相似文献   
165.
The reuse of waste materials requires the development of assessment methods for the long-term release of pollutants (source term) from wastes (or materials containing wastes) in contact with water. These methods depend on the scenario conditions: characteristics of the materials (especially physical structure and composition), contact with water… The scenario studied here is a water storage reservoir for fire extinguishing. The reservoir construction is made of a mixture of hydraulic binders and air pollution control (APC) residues from municipal solid waste incinerator (MSWI). The modelling of the source term is performed in five steps ranging from the physico-chemical characterisation of the material to the validation of the proposed model by means of field simulation devices. This paper follows a first publication on source term modelling using laboratory tests which therefore concerns the comparison of the results obtained with the previously established model. The first laboratory scale simulation test aims at taking into account the role of the leachate carbonation in the leaching behaviour of the studied material. The results obtained show that air carbonation of the leachate does not fundamentally change mass transfer mechanisms of easily soluble species (especially for alkaline metals). For these species, the use of the apparent diffusional model (model proposed in the previous paper) is, therefore, at first, a satisfactory solution for the prediction of long term leaching behaviour. The field scale test enables us to validate and calibrate the release model determined on a laboratory scale basis.  相似文献   
166.
Biosolids from the WWTP of Thessaloniki were examined for the leaching of phosphorus (as ), nitrogen (as and ), and organic matter (as TOC and COD), using two tests: (1) a pH static leaching test and (2) a characterization test, relating contaminant release to the liquid to solid (L/S) ratio. Moreover, a Microtox toxicity test was conducted, to examine the pH dependency of the toxicity of the sludge leachate on the Vibrio fischeri bacterium. Maximum phosphorus release was observed at pH < 3 and at pH > 10. Ammonium nitrogen exhibited maximum leachability at near neutral pH conditions, while nitrate nitrogen exhibited a mild increase in the leachate, as the leachant pH increased from 2 to 12. Both TOC and COD exhibited an increase in the leachate concentration, as the leachant pH was increased from 2 to 12. Ecotoxicological analysis showed that maximum toxicity occurred at very low and very high pH-conditions. As liquid-to-solid ratio increased, the leachate concentration (in mg/l) of all parameters studied decreased. The results of the study were used to conduct a release assessment estimate for the case of Thessaloniki.  相似文献   
167.
In previous studies, we focused on a mechanochemical process for recycling fly ash for use in cement; this process was expected to immobilize heavy metals in the fly ash, a desirable outcome in light of the fact that recycled fly ash is commonly used in the synthesis of inorganic materials. Here, we investigated the leaching of lead (Pb) from fly ash treated by a mechanochemical process and from cement prepared from the treated fly ash. We used lead oxide (PbO), a typical Pb compound in fly ash, as a model substance. Mechanochemical treatment of the fly ash inhibited Pb leaching by 93%, and further inhibition (more than 99.9%) was observed in cement produced from the treated fly ash. During the mechanochemical treatment, PbO was reduced to Pb by iron from the stainless-steel mill used for processing, and the lower solubility of Pb in water resulted in immobilization of the Pb.  相似文献   
168.
A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of 14C-labeled substances in soil–plant–atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between 14C-emissions from soil surfaces and 14C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate – using the two-chamber-lysimeter-test-system – are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil–plant-systems. Mineralization of 14C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide 14C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules.  相似文献   
169.
Leachability of printed wire boards containing leaded and lead-free solder   总被引:1,自引:0,他引:1  
Due to environmental concerns and regulatory initiatives, electronics manufacturers are replacing the tin/lead solder commonly used on printed wire boards (PWBs) with alternative solders. To determine the potential waste management impacts of the alternative solders versus the tin/lead solder, two leaching tests on PWBs manufactured with five alternative types of solder were performed: the toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP). These tests are commonly used in the US regulatory community to assess pollutant leachability in different disposal scenarios. The article discusses the application and limitations of these tests. The five types of solders investigated were 63Sn/37Pb, 99.3Sn/0.7Cu, 95.5Sn/4Ag/0.5 Cu, 96Sn/2.5Ag/1Bi/0.5Cu, and 42Sn/1Ag/57Bi. The leaching tests were conducted on four PWB sections, each with a unique configuration and solder density. The largest lead concentrations were observed from the PWBs containing Sn/Pb solder, with concentrations exceeding the hazardous waste toxicity characteristic (TC) in TCLP leachates. Silver, the other regulated element used in the solders, was rarely detected, with none of the samples exceeding the TC limit for silver. High copper concentrations were observed and were determined to result from the PWB itself, not from the copper-containing solders.  相似文献   
170.
对固体废物中挥发性有机物浸出方法的几点实验探讨   总被引:1,自引:1,他引:0  
采用零顶空提取器,对陈旧油墨渣和蒽琨渣样品中的挥发性有机物进行了浸出实验和分析测定,浸出液采用静态顶空分流进样、GC/MS法分析。对影响挥发性有机物浸出效率的因素进行了研究,结果表明,浸提剂加入方式、浸出时间和浸出液收集方法等对分析结果准确度有较大影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号