首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   3篇
  国内免费   78篇
安全科学   14篇
废物处理   2篇
环保管理   23篇
综合类   155篇
基础理论   62篇
环境理论   1篇
污染及防治   58篇
评价与监测   5篇
社会与环境   4篇
灾害及防治   3篇
  2023年   8篇
  2022年   8篇
  2021年   12篇
  2020年   14篇
  2019年   18篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   18篇
  2014年   14篇
  2013年   17篇
  2012年   14篇
  2011年   20篇
  2010年   11篇
  2009年   11篇
  2008年   8篇
  2007年   14篇
  2006年   18篇
  2005年   16篇
  2004年   17篇
  2003年   7篇
  2002年   11篇
  2001年   5篇
  2000年   8篇
  1999年   8篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1987年   1篇
排序方式: 共有327条查询结果,搜索用时 46 毫秒
71.
BACKGROUND: Water is the basis for life and culture. In addition to the availability of water its quality has become a major issue in industrialized areas and in developing countries as well. Water usage has to be seen as part of the hydrological cycle. As a consequence water management has to be sustainable. The aim of the contribution is to give water usage oriented quality criteria and to focus on the technical means to achieve them. MAIN FEATURES: Water is used for many purposes, ranging from drinking and irrigation to a broad variety of technical processes. Most applications need specific hygienic, chemical and/or physical properties. RESULTS: To meet these demands separation and reaction principles are applied. The reuse of water and the application of water treatment with little or no waste and by-product formation is the way to go. Membrane separation and advanced oxidation including catalytic reactions are promising methods that apply natural processes in sustainable technical performance. Thus elimination of specific water constituents (e.g. salts and metals, microorganisms) and waste water cleaning (e.g. pollutants, nutrients and organic water) can be done efficiently. OUTLOOK: Learning from nature and helping nature with appropriate technology is a convincing strategy for sustainable water management.  相似文献   
72.
膜生物反应器中膜分离单元运行参数优化试验   总被引:3,自引:1,他引:3  
用生活杂排水对膜生物反应器中膜分离单元的运行参数进行了优化试验研究,膜分离单元采用中空纤维超滤膜,试验表明,在适宜的反冲洗和化学清洗条件下,膜的透水率可及时、有效地恢复,使膜生物反应器能长期稳定地运行。  相似文献   
73.
中空纤维膜器处理含铀(VI)废水的研究   总被引:3,自引:0,他引:3  
在中空纤维膜器中研究了二(2-乙基己基)磷酸(HDEHP_煤油膜萃取含铀(Ⅵ)废水。实验表明,HDEHP-煤油膜萃取铀(Ⅵ)的萃取率随萃取时间的增加而增加;当水相pH大于2时,水相酸度对速率影响较小,当水相pH小于2时,随着水相pH的提高,速率明显上升;提高水相流速可提高膜萃取率;当有机相HDEHP浓度小于0.01mol/L时,随着HDEHP浓度的提高萃取率上升,当大于0.01mol/L后,其浓度改变对萃取率影响不大。温度和有机相流速对膜萃取率影响较小。  相似文献   
74.
平片膜生物反应器中膜污染特性的实验研究   总被引:3,自引:0,他引:3  
采用聚偏氟乙烯平片膜生物反应器 ,通过测定不同运行条件下的水通量研究其污染特性 ,重点考察了运行时间、操作压力、曝气状况对膜污染的影响。实际结果表明 ,在曝气量为 3m3 h、操作压力为 0 .0 2MPa条件下运行 6h后 ,膜水通量从2 4 0mL min·m2 降至 5 5mL min·m2 ,下降率超过 77%。  相似文献   
75.
Volatile organic chloramines are reported as the disinfection byproducts during chlorination or chloramination.However,ClO_2,as an important alternative disinfectant for chlorine,was not considered to produce halogenated amines.In the present work,volatile organic chloramines including(CH_3)_2 NCl and CH_3 NCl_2 were found to be generated during the reaction of ClO_2 and the dye pollutants.(CH_3)_2 NCl was the dominant volatile DBP to result from ClO_2 treated all four dye pollutants including Methyl Orange,Methyl Red,Methylene Blue and Malachite Green,with molar yields ranging from 2.6% to 38.5% at a ClO_2 to precursor(ClO_2/P) molar ratio of 10.HOCl was identified and proved to be the reactive species for the formation of (CH_3)_2 NCl,which implied(CH_3)_2 NCl was transformed by a combined oxidation of ClO_2 and hypochlorous acid.(CH_3)_2 NCl concentrations in the ppb range were observed when real water samples were treated by ClO_2 in the presence of the dye pollutants.The results suggest that these azo dyes are one of the significant precursors for the formation of HOCl during ClO_2 treatment and that organic chloramines should be considered in ClO_2 disinfection chemistry and water treatment.  相似文献   
76.
Traditional culture methods may underestimate the tolerance of microorganisms to disinfectants because of the existence of viable but nonculturable or sublethally injured cells after disinfection.The selection of a strict method is crucial for the evaluation of disinfection performance.The actions of 2 typical disinfectants–ultraviolet(UV)and chlorine–on the fecal indicator Escherichia coli were investigated by the detection of culturability,membrane permeability,metabolic activity,deoxyribonucleic acid(DNA),and messenger ribonucleic acid(m RNA).During UV disinfection,the irreversible damages in the cell membrane and cellular adenosine triphosphate(ATP)were negligible at low UV doses(80 m J/cm~2).However,membrane permeability was damaged at low doses of chlorine(5 mg/L),leading to leakage of cellular ATP.Our study showed that a slight lesion in DNA was detected even at high doses of UV(400 m J/cm~2)and chlorine(5 mg/L)treatments.The decay of m RNA was more rapid than that of DNA.The degradation level of m RNA depended on the choice of target genes.After exposure to 50 m J/cm~2UV dose or 5 mg/L chlorine for30 min,the DNA damage repair function(Rec A m RNA)was inhibited.The m RNA involved in the DNA damage repair function can be a potential indicator of bacterial viability.  相似文献   
77.
碱/超声预处理对头孢菌素菌渣破壁效果的影响   总被引:2,自引:2,他引:0  
为提高头孢菌素菌渣的厌氧消化利用率,采用碱解与超声波破碎联合处理方法对头孢菌素菌渣进行细胞破壁,并通过正交实验和单因素实验研究pH值、含水率、声能密度和反应时间对破壁效果的影响。结果表明,最佳处理条件为:pH值为11.5、含水率为94%、声能密度为2 W/mL、反应时间为30 min,处理后SCOD溶解率为265.26%,总氮溶解率为155.28%,破壁效果明显。  相似文献   
78.
Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration (NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations (i.e., 48 and 169 hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure = 12 bar, pH = 4 and flow rate = 8 L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6 hr which is 175% longer than that of the 48-hr one. High molecular weight (MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment.  相似文献   
79.
As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration (UF) systems in water treatment processes. In this work, a comparative study was performed to investigate the effects of the composition of backwash water on the hydraulic cleaning performance of UF membranes fouled by humic acid (HA). Various types of backwash water, including UF permeate, Milli-Q water, NaCl solution, CaCl2 solution and HA solution, were compared in terms of hydraulically irreversible fouling index, total surface tension and residual HA. The results indicated that Milli-Q water backwash was superior to UF permeate backwash in cleaning HA-fouled membranes, and the backwash water containing Na+ or HA outperformed Milli-Q water in alleviating HA fouling. On the contrary, the presence of Ca2 + in backwash water significantly decreased the backwash efficiency. Moreover, Ca2 + played an important role in foulant removal, and the residual HA content closely related to the residual Ca2 + content. Mechanism analysis suggested that the backwash process may involve fouling layer swelling, ion exchange, electric double layer release and competitive complexation. Ion exchange and competitive complexation played significant roles in the efficient hydraulic cleaning associated with Na+ and HA, respectively.  相似文献   
80.
Three-dimensional fluorescence excitation–emission matrix(EEM) coupled with parallel factor analysis(PARAFAC) was performed for a total of 18 water samples taken from three water sources(two lakes and one wastewater treatment plant(WWTP) secondary effluent),with the purpose of identifying the major ultrafiltration(UF) membrane foulants in different water sources. Three fluorescent components(C1, C2 and C3) were identified,which represented terrestrially derived humic-like substances(C1), microbially derived humic-like substances(C2), and protein-like substances(C3). The correlations between the different fluorescent components and UF membrane fouling were analyzed. It was shown that for the WWTP secondary effluent, all three components(C1, C2 and C3) made a considerable contribution to the irreversible and total fouling of the UF membrane.However, for the two lakes, only the C3 exhibited a strong correlation with membrane fouling, indicating that the protein-like substances were the major membrane foulants in the lake waters. Significant attachment of C1, C2 and C3 to the UF membrane was also confirmed by mass balance analyses for the WWTP secondary effluent; while the attachment of C1 and C2 was shown to be negligible for the two lakes. The results may provide basic formation for developing suitable fouling control strategies for sustainable UF processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号