首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  国内免费   33篇
安全科学   11篇
废物处理   5篇
环保管理   8篇
综合类   41篇
基础理论   6篇
污染及防治   20篇
灾害及防治   1篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   12篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   6篇
  2003年   1篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1996年   2篇
  1993年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
51.
以2-丙烯酸羟乙酯(HEA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体合成了聚合物水凝胶(PHEA/AMPS),采用水凝胶对水溶液中Fe(Ⅲ)的吸附行为进行了研究。实验主要考察了聚合物组分、溶液pH、初始Fe(Ⅲ)浓度和吸附时间对水凝胶吸附作用的影响,并通过FT-IR和XPS分析了吸附前后水凝胶的变化。结果表明,当单体摩尔比AMPS∶HEA=1∶1,pH=2时,水凝胶对Fe(Ⅲ)的吸附容量最大。水凝胶对水溶液中Fe(Ⅲ)的吸附容量随着溶液中初始Fe3+浓度的增加而增加,但当初始Fe3+的浓度达到1 g/L时,吸附容量基本达到饱和。吸附等温线符合Langmuir等温线方程,吸附动力学符合准二级模型。FI-IR和XPS的分析表明,水凝胶的磺酸基和酰胺基是吸附Fe3+的有效功能性基团,吸附机理为螯合和离子交换。  相似文献   
52.
A combination of a residual film of flammable organic substance, air and porous structures like insulation material (e.g. stone wool) may result in a fire. The initiating self-heating process depends on the substance (reactivity, volatility), amount of accumulated liquid, volume and temperature. Specific information is given for application and extension of the Thomas criterion with a 2nd order reaction. The experimental part includes new experimental techniques to determine heat transfer and formal reaction kinetic data. The applied self-ignition temperature (SIT) simulation model relies on liquid film volume and not on liquid film surface reaction. As a further result of the studies detailed working procedure of three simplified methodologies for estimation of SITs in technical scale are presented. New techniques to determine parameters necessary for SIT prediction, especially in combination with Methodology III, have the power to reduce the costs for estimating the SIT up to 80%.  相似文献   
53.
Cationic hydrogels have receive d great attention to control eutrophication and recycle phosphate.In this study,a type of La(OH)3 loaded magnetic MAPTAC-based cationic hydrogel(La(OH)3@MMCH) was developed as a potential adsorbent for enhanced phosphate removal from aqueous environment.La(OH)3@MMCH exhibited high adsorption capacity of105.72±5.99 mg P/g,and reached equilibrium within 2 hr.La(OH)3@MMCH could perform effectively in a wide pH range from 3....  相似文献   
54.
This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9–1.2 g cm?3 and 50–60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m?1 K?1. Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications.  相似文献   
55.
This article reports experimental investigation of deflagration flame quenching behavior by porous media. In this study, a semi-vented deflagration chamber with a porous media plate was constructed, taking account of effects of obstacles and porous media materials on the flame quenching process. A high speed video camera was used to image the process and behavior of flame propagation, meanwhile, the gas-phase temperatures and ion currents, upstream, within, and downstream of the porous media, were measured using micro-thermocouples and ion probes, respectively. Results show that methane/air deflagration flame can be quenched by the Al2O3 porous media with thickness of 20 mm and pore density of 10 ppi. However, the presence of obstacles along the flame path may lead to significant increase of flame speed, thereby both the decreases of gas-phase temperature and ion current when the flame passes through the porous medium in the case with continuous obstacles are less, eventually the unburnt gases downstream the porous media may be reignited. Compared to Al2O3, Al porous media shows superior flame quenching performance because this metallic material has higher thermal conductivity, which makes combusting flame release more heat to the pore walls and adjoining structures of the porous media.  相似文献   
56.
A novel polyimide-inlaid amine-rich porous organic block copolymer (PI-b-ARPOP) was prepared via one-step polymerization by using different molar ratios of melamine (MA)/terephthalaldehyde (TA)/pyromellitic dianhydride (PMDA), at molar ratios of 4/3/1, 4/2/2 and 4/1/3. The copolymer contained both aminal groups belonging to ARPOP and imide groups belonging to PI, and the bonding styles of the monomers and growth orientations of the polymeric chains were diversiform, forming an excellent porous structure. Notably, MA/TA/PMDA (4/2/2) had a surface area and pore volume of 487.27?m2/g and 1.169?cm3/g, respectively. The adsorption performance of the materials towards 2,4-dichlorophenol (2,4-DCP) in ultra-pure water was systematically studied. The pH value of 7 was optimal in aqueous solution. Na+ and Cl? ions did not negatively affect the adsorption process, while humic acid (HA) slightly decreased the capacity. The equilibrium time was 40 sec, and the maximum adsorption capacity reached 282.49?mg/g at 298?K. The removal process was endothermic and spontaneous, and the copolymer could maintain its porous structure and consistent performance after regeneration by treatment with alkali. Moreover, to further assess the practical applicability of the material, the adsorption performance towards 2,4-DCP in river water was also investigated. This paper demonstrated that the PI-b-ARPOP can be an efficient and practical adsorbent to remove chlorophenols from aqueous solution.  相似文献   
57.
本文通过自由基聚合反应合成了一种带永久正电荷的磁性阳离子水凝胶,评价了该水凝胶对水体中六价铬的吸附去除效果.结果表明,磁性阳离子水凝胶具有较强的热稳定性和磁性,水凝胶中的磁性粒子γ-Fe2O3约占总质量10%,红外光谱测试表明水凝胶表面含有酰胺基和季铵基团.在pH 3—12,磁性阳离子水凝胶具有较好的化学稳定性,其表面...  相似文献   
58.
• PA layer properties tune the primary nanochannels in MIL-101(Cr) TFN NF membranes. • The dense PA layer induced transition of primary nanochannels of TFN NF membranes. • Nanochannels around MOF contributed to the improved flux with a loose PA structure. • Nanochannels in MOFs dominated the separation performance with a dense PA structure. Metal organic framework (MOF) incorporated thin-film nanocomposite (TFN) membranes have the potential to enhance the removal of endocrine disrupting compounds (EDCs). In MOF-TFN membranes, water transport nanochannels include (i) pores of polyamide layer, (ii) pores in MOFs and (iii) channels around MOFs (polyamide-MOF interface). However, information on how to tune the nanochannels to enhance EDCs rejection is scarce, impeding the refinement of TFN membranes toward efficient removal of EDCs. In this study, by changing the polyamide properties, the water transport nanochannels could be confined primarily in pores of MOFs when the polyamide layer became dense. Interestingly, the improved rejection of EDCs was dependent on the water transport channels of the TFN membrane. At low monomer concentration (i.e., loose polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) in the polyamide layer could not dominate the membrane separation performance, and hence the extent of improvement in EDCs rejection was relatively low. In contrast, at high monomer concentration (i.e., dense polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) were responsible for the selective removal of hydrophobic EDCs, demonstrating that the manipulation of water transport nanochannels in the TFN membrane could successfully overcome the permeability and EDCs rejection trade-off. Our results highlight the potential of tuning primary selective nanochannels of MOF-TFN membranes for the efficient removal of EDCs.  相似文献   
59.
Characteristics of air–water two-phase flow pattern in a square-mini-channel were investigated experimentally. One sidewall of the flow channel was made of a permeable porous media. Air was fed into the channel from its inlet, while liquid water was injected uniformly into the channel along the permeable sidewall. Based on the results of visualization, the typical flow patterns encountered in the conventional co-current gas–liquid two-phase flow were not observed in the present work. Flow patterns of this special gas–liquid two-phase flow were catalogued, and the influence of gas flow rate and liquid infiltration rate on flow patterns was also analyzed. The results also indicate that the channel differential pressure on both sides brings obvious fluctuations when the liquid is infiltrated. The frequency of this fluctuation depends not only on the amount of liquid infiltration but also relies on the gas flow rate significantly. However, the amount of liquid infiltration barely affects the fluctuation in the amplitude of the pressure differential.  相似文献   
60.
Transport behaviors of graphene oxide nanoparticles (GONPs) in saturated porous media were examined as a function of the presence and concentration of anionic surfactant (SDBS) and non-ionic surfactant (Triton X-100) under different ionic strength (IS). The results showed that the GONPs were retained obviously in the sand columns at both IS of 50 and 200 mmol/L, and they were more mobile at lower IS. The presence and concentration of surfactants could enhance the GONP transport, particularly as observed at higher IS. It was interesting to see that the GONP transport was surfactant type dependent, and SDBS was more effective to facilitate GONP transport than Triton X-100 in our experimental conditions. The advection–dispersion–retention numerical modeling followed this trend and depicted the difference quantitatively. Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction calculations also were performed to interpret these effects, indicating that secondary minimum deposition was critical in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号