首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   6篇
  国内免费   31篇
安全科学   4篇
废物处理   15篇
环保管理   16篇
综合类   87篇
基础理论   8篇
污染及防治   29篇
评价与监测   3篇
社会与环境   5篇
灾害及防治   7篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   10篇
  2013年   8篇
  2012年   13篇
  2011年   15篇
  2010年   9篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   9篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1977年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
171.
The effects of various factors including turbidity, pH, DOC, temperature, and solar radiation on the concentrations of total mercury (TM) and dissolved gaseous mercury (DGM) were investigated in an artificial reservoir in Korea. Episodic total mercury accumulation events occurred during the rainy season as turbidity increased, indicating that the TM concentration was not controlled by direct atmospheric deposition. The DGM concentration in surface water ranged from 3.6 to 160 pg/L, having a maximum in summer and minimum in winter. While in most previous studies DGM was controlled primarily by a photo-reduction process, DGM concentrations tracked the amount of solar radiation only in winter when the water temperature was fairly low in this study. During the other seasons microbial transformation seemed to play an important role in reducing Hg(II) to Hg(0). DGM increased as dissolved organic carbon (DOC) concentration increased (p-value < 0.01) while it increased with a decrease of pH (p-value < 0.01).  相似文献   
172.
Wu BZ  Chen HY  Wang SJ  Wai CM  Liao W  Chiu K 《Chemosphere》2012,88(7):757-768
Technologies such as thermal, oxidative, reductive, and microbial methods for the remediation of polychlorinated biphenyls (PCBs) have previously been reviewed. Based on energy consumption, formation of PCDD/F, and remediation efficiency, reductive methods have emerged as being advantageous for remediation of PCBs. However, many new developments in this field have not been systematically reviewed. Therefore, reductive technologies published in the last decade related to remediation of PCBs will be reviewed here. Three categories, including catalytic hydrodechlorination with H2, Fe-based reductive dechlorination, and other reductive dechlorination methods (e.g., hydrogen-transfer dechlorination, base-catalyzed dechlorination, and sodium dispersion) are specifically reviewed. In addition, the advantages of each remediation technology are discussed. In this review, 108 articles are referenced.  相似文献   
173.
根据吡虫啉农药废水成分复杂,含有大量有毒有害物质的特点,在小试实验研究的基础上,确定了预处理的组合工艺流程为:钙法除磷-碱解-催化微电解。实验结果表明,预处理的适宜参数为:钙法除磷的pH值11,搅拌速度为100 r/min,钙的投加量为理论计算值的1.4倍;碱解反应的温度70℃,pH值11,反应时间2 h;催化微电解反应的pH值3~4,曝气时间3 h,催化剂与铸铁屑的质量比1∶5。组合工艺对COD、色度、磷的总去除率分别达到81%、90%和99.99%,废水的可生化性能得到很大改善。组合工艺不仅适用于预处理高浓度吡虫啉农药废水,也能为其他高浓度、难生物降解农药废水的治理提供有益的参考。  相似文献   
174.
Lee JY  Hozalski RM  Arnold WA 《Chemosphere》2007,66(11):2127-2135
Iron metal (Fe(0)) is a potent reductant capable of reducing a wide variety of halogenated organic compounds including disinfection byproducts (DBPs). These reduction reactions may play a role in DBP fate in iron water mains and potentially could be exploited to remove DBPs from drinking water or wastewater in a packed-bed configuration. Oxidants (i.e., dissolved oxygen (DO) and chlorine) present in the water, however, may decrease the DBP degradation rate by competing for reactive sites and rapidly aging or corroding the iron surface. Thus, batch experiments were performed to investigate the effect of DO on the degradation rates of selected DBPs by Fe(0). Experiments were performed under anaerobic conditions, in initially oxygen saturated buffer without DO control, and under controlled DO (approximately 4.0 or 8.0 mg l−1) conditions. The effect of short-term (25–105 min) iron aging in DO-containing buffer on DBP degradation rate also was investigated in separate experiments. For fresh Fe(0), the degradation rates of trichloronitromethane (TCNM) and trichloroacetonitrile (TCAN) in initially oxygen saturated buffer were similar to their respective rates under anaerobic conditions. The degradation rate of 1,1,1-trichloropropanone (1,1,1-TCP), however, decreased significantly in the presence of DO and the effect was proportional to DO concentration in the controlled DO experiments. For a DO concentration of 4 mg l−1, the degradation rate of the three DBPs was greater for longer aging times as compared to their respective rates after 25 min, suggesting the formation of a mineral phase that increased reactivity. For a DO concentration of 8 mg l−1, the effects of increasing aging time were mixed. TCNM degradation rates were stable for all aging times and comparable to that under anaerobic conditions. The TCAN and 1,1,1-TCP degradation rates, however, tended to decrease with increasing aging time. These results suggest that the reduction of highly reactive DBPs by Fe(0) will not be affected by the presence of DO but that the reaction rates will be slowed by DO for DBPs with slower degradation kinetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号