首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   5篇
环保管理   2篇
综合类   9篇
基础理论   1篇
污染及防治   1篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2012年   1篇
  2007年   2篇
  2006年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
Soil erosion has a critical effect on ecological security and socioeconomics, which may deteriorate ecosystem services and common human well-being. The revised universal soil loss equation (RUSLE) was applied to assess soil erosion from 1984 to 2013 in the Tibetan Plateau and analyzed the temporal and spatial variation of soil erosion intensity. Furthermore, the temporal and spatial variation rates of soil erosion were explored across different ecosystems. The results indicated that the annual soil erosion fuctuated in the Tibetan Plateau, the soil erosion intensity decreased from south to north, and the most serious soil erosion was mainly distributed in the southern Tibetan Plateau (Xigaze and Changdu regions, Lhasa, and north of the Shannan region). The soil erosion intensity was higher in shrub, alpine meadow, and sparse vegetation ecosystems. The highest soil erosion was found in alpine meadow (2.17 × 1010 t), followed by alpine grassland (1.59 × 1010 t) and sparse vegetation (1.30 × 1010 t) ecosystems. Meanwhile, although the most serious soil erosion intensity was found in the regions of 3 000-4 000 m altitude, the soil erosion was mainly observed in the regions of 4 000-5 000 m altitude. In the three most recent decades, annual soil erosion decreased at a rate of-1.78 × 108 t/a. Additionally, soil erosion mainly increased in south of the Qiangtang Plateau and in the periphery of the Qaidam basin. Decreased soil erosion was mainly found along the Hengduan Mountains, central Himalayas. Although the increased annual normalized difference vegetation index (NDVI) had positive effects for soil protection, changes in soil erosion was mainly controlled by the change of annual precipitation. Thus, the fragility of ecological systems and increased rainfall erosivity accounted for the obviously increased soil erosion in the alpine grassland ecosystem (1.19 × 10 t/a). However, increased ecosystem stability and decreased rainfall erosivity contributed to the decreased soil erosion in forest and shrub ecosystems, by-0.77 × 10 t/a and-1.65 × 10 t/a, respectively. The slightly decreased rainfall erosivity accounted for a decrease of soil erosion in the sparse vegetation ecosystem (-0.44 × 10 t/a). Meanwhile, soil erosion has decreased in the alpine meadow ecosystem over the past 30 years, which may owing to the relatively higher NDVI that neutralized the increase of rainfall erosivity to some extent. This study revealed serious soil erosion regions and ecosystems in the Tibetan Plateau and explored possible reasons for variations in soil erosion in different ecosystems, which may provide a scientific reference for soil erosion conservation and control in the near future. © 2018 Science Press. All rights reserved.  相似文献   
12.
Atmospheric aerosols have effects on atmospheric radiation assessments, global climate change, local air quality and visibility. In particular, aerosols are more likely transformed and accumulated in winter. In this paper, we used the Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument to study the characteristics of aerosol type and contributions of PM2.5 chemical components to aerosol extinction (AE), vertical distribution of aerosols, and source. From December 30, 2018 to January 27, 2019, we conducted MAX-DOAS observations on Sanmenxia. The proportion of PM2.5 to PM10 was 69.48%–95.39%, indicating that the aerosol particles were mainly fine particles. By analyzing the ion data and modifying Interagency Monitoring of Protected Visual Environments (IMPROVE) method, we found that nitrate was the largest contributor to AE, accounting for 31.51%, 28.98%, and 27.95% of AE on heavily polluted, polluted, and clean days, respectively. NH4+, OC, and SO42? were also major contributors to AE. The near-surface aerosol extinction retrieved from MAX-DOAS measurement the PM2.5 and PM10 concentrations measured by an Unmanned Aerial Vehicle (UAV) have the same trend in vertical distribution. AE increased about 3 times from surface to 500 m. With the backward trajectory of the air mass during the haze, we also found that the continuous heavy pollution was mainly caused by transport of polluted air from the northeast, then followed by local industrial emissions and other sources of emissions under continuous and steady weather conditions.  相似文献   
13.
2019年5月27日~6月27日对江苏省常州市的气溶胶光学性质参数、颗粒物数浓度和PM_(2.5)组分进行观测,联用扫描电迁移率粒径谱仪(SMPS)、黑碳仪(AE33)、腔衰减相移式单次反照率监测仪(CAPS)、在线离子色谱分析仪(MARGA)和RT-4型有机碳/元素碳(OC/EC)分析仪分析:①新粒子生成期间化学组分与光学参数的变化;②IMPROVE、 MIE理论重建消光系数与实测值的闭合性对比.观测期间共有两次明显的新粒子生成事件,粒子粒径从4 nm持续增长到64 nm,在新粒子生成初期硫酸盐贡献较大,生成过程中实测平均消光系数为95.40 Mm~(-1),IMPROVE模型重建平均消光系数为140.20 Mm~(-1),MIE理论模型计算平均消光系数为93.54 Mm~(-1),低于我国城市气溶胶消光系数均值300 Mm~(-1).本次观测采用多仪器联用的方式从颗粒物数浓度粒径谱、化学组分谱等不同的方面更好地对气溶胶理化性质进行表征.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号