World-wide urbanization has significantly modified the landscape, which has important climatic implications across all scales due to the simultaneous removal of natural land cover and introduction of urban materials. This resulted in a phenomenon known as an urban heat island(UHI). A study on the UHI in Xiamen of China was carried out using remote sensing technology. Satellite thermal infrared images were used to determine surface radiant temperatures. Thermal remote sensing data were obtained from band 6 of two Landsat TM/ETM^ images of 1989 and 2000 to observe the UHI changes over l l-year period. The thermal infrared bands were processed through several image enhancement technologies. This generated two 3-dimension-perspective images of Xiamen‘s urban heat island in 1989 and 2000, respectively, and revealed heat characteristics and spatial distribution features of the UHI. To find out the change of the UHI between 1989 and 2000, the two thermal images were first normalized and scaled to seven grades to reduce seasonal difference and then overlaid to produce a difference image by subtracting corresponding pixels. The difference image showed an evident development of the urban heat island in the 11 years. This change was due largely to the urban expansion with a consequent alteration in the ratio of sensible heat flux to latent heat flux. To quantitatively compare UHI, an index called Urban-Heat-Island Ratio Index(URI) was created. It can reveal the intensity of the UHI within the urban area. The calculation of the index was based on the ratio of UHI area to urban area. The greater the index, the more intense the UHI was. The calculation of the index for the Xiamen City indicated that the ratio of UHI area to urban area in 2000 was less than that in 1989. High temperatures in several areas in 1989 were reduced or just disappeared, such as those in old downtown area and Gulangyu lsland. For the potential mitigation of the UHI in Xiamen, a long-term heat island reduction strategy of planting shade trees and using light-colored, highly reflective roof and paving materials should be included in the plans of the city planers, environmental managers and other decision-makers to improve the overall urban environment in the future. 相似文献
Atmospheric oxidizing capacity (AOC) is an essential driving force of troposphere chemistry and self-cleaning, but the definition of AOC and its quantitative representation remain uncertain. Driven by national demand for air pollution control in recent years, Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research. This paper will give a brief review of these developments. First, AOC indexes were established that represent apparent atmospheric oxidizing ability (AOIe) and potential atmospheric oxidizing ability (AOIp) based on aspects of macrothermodynamics and microdynamics, respectively. A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing, and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country. In addition, the detection of ground or vertical profiles for atmospheric OH·, HO2·, NO3· radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments. Moreover, laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O3 and NO2, which are typical oxidants in the surface/interface atmosphere, and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies, multiphase and multi-interface conditions were obtained. Finally, based on the GRAPES-CUACE adjoint model improved by Chinese scholars, simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized. Normalized numerical simulations of AOIe and AOIp were performed, and regional coordination of AOC was adjusted. An optimized plan for controlling O3 and PM2.5 was analyzed by scenario simulation. 相似文献