首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   74篇
  国内免费   135篇
安全科学   8篇
废物处理   32篇
环保管理   22篇
综合类   255篇
基础理论   24篇
污染及防治   52篇
评价与监测   6篇
  2024年   2篇
  2023年   9篇
  2022年   10篇
  2021年   19篇
  2020年   16篇
  2019年   15篇
  2018年   16篇
  2017年   13篇
  2016年   18篇
  2015年   20篇
  2014年   20篇
  2013年   34篇
  2012年   20篇
  2011年   22篇
  2010年   19篇
  2009年   14篇
  2008年   16篇
  2007年   14篇
  2006年   25篇
  2005年   17篇
  2004年   12篇
  2003年   12篇
  2002年   12篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
91.
硝基苯废水治理的最新研究进展   总被引:1,自引:0,他引:1  
硝基苯类化合物的高毒性、难降解性及其在环境中的积累性,使得硝基苯污染治理越来越受到科研工作者的关注.近几年国内外硝基苯废水治理的研究主要包括物化法、生物法两大类.深入探讨每种技术的基本原理和存在的问题,对硝基苯类废水的处理难点和关键技术以及今后的研究方向进行了分析探讨,发现目前尚未出现具有显著经济和环境优势的技术,同时还指出硝基苯废水处理技术近期的进展可能取决于将现有处理技术综合应用.  相似文献   
92.
电化学氧化对罗丹明B脱色的研究   总被引:7,自引:0,他引:7  
以网状钛涂钌材料作为阳极,网状不锈钢作为阴极,研究了在阴、阳极室无隔膜电解槽内模拟罗丹明B废水电催化脱色效果。研究结果表明,电解电压、电解质(Na2SO4)浓度、反应时间、溶液的pH、NaCl的投加量对罗丹明B的脱色有较大影响。在Na2SO4浓度为0.1mol/L时,外加电压8V,电解100min,20mg/L罗丹明B溶液的脱色率可以达到90.5%;在上述溶液中NaCl浓度达到20mg/L时,只需电解30min,罗丹明B的脱色率几乎达到100%。  相似文献   
93.
目的编制某新型航空材料加速腐蚀试验环境谱。方法开展该材料试件电化学腐蚀试验,利用极化曲线分析法得出该材料于典型Na Cl溶液浓度、温度下的开路电位和腐蚀电流,并结合当量折算法,利用腐蚀电流比值,得到其于典型Na Cl溶液条件下的当量关系。结果新型合金钢材料的腐蚀电流在35℃条件下随着Na Cl浓度的升高而升高,在3.5%Na Cl浓度的条件下随着温度的升高而升高。结论以不同环境条件为基准,当量关系具体数值有变化。  相似文献   
94.
钢轨的腐蚀关乎铁路运营效益和运输系统的安全等重大问题,重轨钢的耐腐蚀性同强度、硬度、耐磨性一样重要,应高度重视对重轨钢耐腐蚀性能的研究。介绍了国内外重轨钢的研究,主要概述在重轨钢加入Cr、Nb、Cu、Si、Mn、Ti、Al、Cr或Ni等不同合金元素,对重轨钢耐腐蚀性能的影响。介绍不同组织(珠光体、贝氏体、马氏体、奥氏体)的重轨钢,以及这些组织对重轨钢耐腐蚀性能的影响,并说明了不同的热处理或加工工艺对重轨钢耐腐蚀性能好坏的影响。最后结合重轨钢腐蚀机理、锈层形成机理和电化学过程以及影响金属大气环境腐蚀的主要因素,提出了几点提高重轨钢耐腐蚀性的研究方向。  相似文献   
95.
为开发高效的电化学阴极材料,提高溶解氧还原为H2O2的产率,利用电沉积法制备出了二氧化锰/膨胀石墨复合基(MnO2/EGM)电极,并用于罗丹明B(RHB)电化学阴极降解过程的研究.实验以纯石墨电极片为阳极,MnO2/EGM复合材料为阴极,分别考察了溶液初始pH值、电流密度、电解质浓度、RHB初始浓度和反应温度对RHB脱色效果的影响.结果表明:利用电沉积法在EGM电极表面均匀负载了MnO2涂层;在二维电极体系中,当初始pH值为2,电流密度为40 mA·cm-2,电解质浓度为0.15 mol·L-1,罗丹明B初始浓度为8 mg·L-1,反应体系温度为25℃时,RHB在电解30 min后达到最大脱色率为94.43%,且其降解过程符合一级反应动力学.运用循环伏安法(CV)研究了复合电极表面的电化学行为,以及在最佳降解条件下对H2O2浓度进行跟踪分析,并对降解机理进行了初步推测,发现电解液中的溶解氧在MnO2/EGM电极表面发生还原反应生成具有强氧化性的H2O2,破坏了RHB的发色基团,从而使罗丹明B达到脱色目的.  相似文献   
96.
目的研究微生物活性与船用钢DH32腐蚀行为之间的关系,并通过胞外分泌物的提取,研究分泌物浓度对材料腐蚀性能的影响。方法通过傅里叶红外光谱(FT–IR)分析胞外分泌物的组成,通过电感耦合等离子体发射光谱仪(ICP-OES)分析金属离子的含量,并使用用原子力显微镜(AFM)观测去除腐蚀产物后的表面形貌。结果通过电化学阻抗谱的拟合分析,短期内,EPS通过阻碍溶解氧的扩散抑制腐蚀速度,EPS浓度越高,效果越好,即实验初期试样腐蚀的速度与EPS浓度成反比。随着时间的延长,EPS浓度低的溶液中,其EPS络合金属离子的能力很快达到饱和,所以尽管其络合行为能促进试样的阳极溶解,但影响作用有限,此时起到主要影响的还是EPS抑制溶解氧扩散。对于浓度高的EPS溶液,其过量的EPS会促进EPS的官能团与材料表面更多的Fe~(2+)/Fe~(3+)离子键合,使得沉积的EPS保护层变得疏松失去隔离溶解氧的作用,进而加速试样腐蚀。结论海洋微生物胞外分泌物对船用钢腐蚀行为的影响与胞外分泌物的结构与浓度有关,随着浓度升高,EPS从抑制腐蚀变为加速腐蚀。  相似文献   
97.
目的研究流动海水环境中人工破损有机涂层的劣化过程。方法使用电化学阻抗谱(EIS)技术对比研究流动海水与静止海水环境中破损涂层的劣化行为,跟踪观察涂层宏观形貌演变。结果根据EIS响应特征,发现流动海水中的人工破损有机涂层劣化更快,且在浸泡后期流动海水中破损涂层没有形成扩散阻抗。根据涂层宏观形貌发展,发现静止海水中涂层仅围绕破损处出现了面积较小的锈点和鼓泡,而流动海水中涂层因劣化而产生的锈点和鼓泡面积更大且大量分布在整个涂层表面。结论当人工破损有机涂层在流动海水和静止海水环境的浸泡过程中,涂层劣化首先从人工破损处开始。破损处成为局部腐蚀反应主要的阳极区,破损处周围的区域和涂层内在缺陷处成为扩展腐蚀反应的阴极区。流动海水中涂层的腐蚀产物累积与脱落更加频繁,导致涂层劣化速度加快和基体金属腐蚀加剧。  相似文献   
98.
采用电-多相臭氧催化(E-catazone)技术处理高COD、高含盐、难生化的金刚烷胺制药废水.对比研究电-多相臭氧催化、多相臭氧催化(Catazone)、电催化氧化(EO)对金刚烷胺制药废水的处理效果,在此基础上进一步研究了电流密度、pH值以及气相O3浓度对电-多相臭氧催化技术处理效果的影响,同时优化实验条件.实验结果表明,在原水pH值为12.5,电流密度为15mA/cm2,O3进气流速0.4L/min,O3浓度为60mg/L的条件下,经过60min反应,电-多相臭氧催化技术获得了62%的COD去除和44%的总有机碳(TOC)去除,其效果显著优于多相臭氧催化(COD 44%,TOC 29%)与电催化氧化(COD 13%,TOC 17%);同时,电-多相臭氧催化不仅氧化能力强,而且氧化速率快,获得的伪一级COD去除速率常数k是多相臭氧催化和电催化氧化的1.81倍和8.22倍,更为重要的是,电-多相臭氧催化技术还可以高效、快速地提高废水的生化性,提高约2个数量级,结果表明,电-多相臭氧催化技术是一种有潜力的高级氧化技术,可以实现高效、快速去除有机污染物以及提高废水的可生化性.  相似文献   
99.
制备了锰粉改进的规整化微电解填料,采用电化学辅助改进微电解填料处理初始COD为6 153.6 mg/L、ρ(NH_3-N)为182.6 mg/L的焦化废水,优化了工艺条件。实验结果表明,电化学辅助微电解法处理焦化废水的最佳工艺条件为电压8 V,填料投加量20 g/L,初始废水pH 6,反应时间30 min。在此条件下废水COD去除率为75.3%,NH_3-N去除率为65.4%;在其他工艺条件相同的情况下,未通过电化学辅助的填料微电解反应的COD去除率为33.0%,NH_3-N去除率为16.2%,电化学辅助后的COD去除率和NH_3-N去除率均明显提高。  相似文献   
100.
采用以假单胞菌Pseudomonas sp.C27为阳极优势菌属的微生物燃料电池(MFC)为研究对象,重点考察了进水中的硝酸盐浓度对于MFC系统产电及污染物去除的影响.实验结果表明,硝酸盐对于MFC的库仑效率(CE)影响较大,当硝酸盐浓度为250 mg·L~(-1)时,其电压下降段库仑效率仅为0.17%,而阳极未加入硝酸盐时,库仑效率为9.3%.当阳极初始硝酸盐浓度由0 mg·L~(-1)增加到250 mg·L~(-1)时,系统的传荷内阻由16.3Ω下降至11.2Ω,输出电压经短暂的电压下降后迅速回升至稳定,其稳定阶段输出电压与未受抑制阶段基本持平,最大输出功率可达到120 m W·m~(-2)左右.当硝酸盐浓度大于300 mg·L~(-1)时,硝酸盐对阳极微生物产电活性造成不可逆的抑制作用,系统产电能力大幅度下降且无法恢复至未受抑制阶段.可见,阳极生物反硝化过程对阳极生物产电具有电子竞争作用,过高的硝酸盐浓度会造成阳极生物膜产电性能降低甚至完全丧失.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号