首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   953篇
  免费   118篇
  国内免费   490篇
安全科学   37篇
废物处理   5篇
环保管理   63篇
综合类   898篇
基础理论   235篇
污染及防治   82篇
评价与监测   103篇
社会与环境   110篇
灾害及防治   28篇
  2024年   10篇
  2023年   32篇
  2022年   67篇
  2021年   70篇
  2020年   62篇
  2019年   64篇
  2018年   65篇
  2017年   79篇
  2016年   88篇
  2015年   77篇
  2014年   82篇
  2013年   99篇
  2012年   107篇
  2011年   82篇
  2010年   70篇
  2009年   53篇
  2008年   55篇
  2007年   60篇
  2006年   60篇
  2005年   54篇
  2004年   52篇
  2003年   17篇
  2002年   25篇
  2001年   22篇
  2000年   31篇
  1999年   15篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   5篇
  1994年   10篇
  1993年   9篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有1561条查询结果,搜索用时 562 毫秒
991.
重庆市盘溪河水质不同季节日变化规律及水质评价   总被引:5,自引:1,他引:4  
在2010年不同季节对盘溪河水质进行了采样监测,分析了盘溪河水质的季节日变化规律,运用非参数检验、方差分析和灰色关联度方法评价了盘溪河不同季节的水质日变化情况.结果表明,在不同季节中,除了Zn和Cu以外,其余各污染物都表现出显著性差异.盘溪河各水质指标季节日变化情况差别较大,DO的浓度在冬季最低,而BOD5、COD和TOC的浓度在冬季最高;NO3--N的浓度在夏季最高,而TN、NH4+-N和TP的浓度在夏季最低;Pb、Cd、Zn和Cu的日变化在不同季节波动都较大.有机污染物(BOD5、COD和TOC)和营养物质(NO3--N、TN、NH4+-N和TP)浓度的峰值多数在12:00~16:00之间;重金属(Pb、Cd、Zn和Cu)浓度的峰值多数在12:00.运用灰色关联度方法评价了盘溪河水质级别:春季在06:00和08:00为Ⅱ类,其余各时间段河流水质为劣Ⅴ类;夏季各时间段河流水质都为Ⅱ类;秋季在06:00和16:00为劣Ⅴ类,其余各时间段水质均为Ⅱ类.冬季在08:00为Ⅱ类,其余各时间段河流水质为劣Ⅴ类.  相似文献   
992.
济南市夏季环境空气VOCs污染特征研究   总被引:9,自引:5,他引:4  
刘泽常  张帆  侯鲁健  刘玉堂  吕波 《环境科学》2012,33(10):3656-3661
对济南市2010年夏季环境空气中56种挥发性有机物进行在线气相色谱监测,分析其污染特征及其与气象条件的关系.结果表明,济南市环境空气监测的56种VOCs中主要为烷烃、芳香烃和烯烃,占总监测挥发性有机物的98.2%;6、7月济南市环境空气VOCs浓度整体稳定,8月中下旬浓度明显偏高,且夏季VOCs成分质量百分比随温度有一定变化;VOCs浓度日变化规律曲线在晴天都有明显的双峰特征,分别出现在每天车流量高峰时段,降雨时无明显双峰特征且浓度偏大;济南市环境空气夏季VOCs浓度与风速、日照时间成负相关性,大气稳定度较高时,污染物不易扩散,VOCs浓度呈增长趋势.济南市VOCs的排放源主要是工业排放和机动车排放、汽油的挥发和泄漏等.  相似文献   
993.
天津城区2019年2~3月气溶胶粒径分布特征观测分析   总被引:1,自引:0,他引:1  
郝囝  蔡子颖  刘敬乐  王晓佳  姚青 《环境科学》2022,43(8):3903-3912
气溶胶粒径分布是反映气溶胶粒子来源、形成过程和污染特征的重要物理参数,为研究天津城市地区气溶胶数浓度和谱分布特征及其影响因素,利用扫描电迁移率颗粒谱仪(SMPS)对2019年2~3月天津河西区10~600 nm气溶胶数浓度粒径分布进行了采样分析.结果表明,冬末春初天津市10~600 nm气溶胶数浓度、表面积浓度和体积分数分别为22188.22 cm-3、1581.08 μm2·cm-3和70.76μm3·cm-3,气溶胶数浓度、表面积浓度和体积分数谱均为单峰分布,峰值粒径分别位于109.40、269.00和429.40 nm.核模态(10~20 nm)、爱根核模态(20~100 nm)和积聚模态(100~600 nm)粒子数浓度分别占气溶胶总数浓度的1.40%、52.44%和46.16%.气溶胶数浓度日变化具有明显的周末效应,工作日为三峰分布,峰值出现在道路交通早晚高峰和午后,周末呈双峰分布,峰值出现在道路交通早晚高峰且出现时间比工作日推迟1~2 h,汽车尾气排放对城区气溶胶浓度增加起重要作用.气象条件对天津城区气溶胶粒径分布有明显影响,气溶胶在偏东风和西南风条件下数浓度较高,非降水日相对湿度(RH)增加导致气溶胶谱分布向大粒径方向移动,随着RH由小于20%升高到50%~60%,气溶胶数浓度谱峰值粒径由50nm增大到131 nm,降水对100~200 nm气溶胶粒子有明显的清除作用,降水过程导致气溶胶谱峰值粒径减小到98 nm.  相似文献   
994.
微塑料既是一种新兴污染物,还能作为载体吸附污染物,对河流等生态系统构成了威胁.但目前针对我国北方河流中微塑料污染问题的研究鲜见.基于对北京市通州区内6条河流共19个点位的水样采集和分析,研究了微塑料的组成及空间分布特征,并揭示了微塑料的潜在来源.结果表明,微塑料在所有点位上的检出率为100%,其中小中河中微塑料的平均丰度是所有河流中最高的(3.50×104 n·m-3),是运潮减河中平均丰度的4.04倍.粒径上,90.49%微塑料的粒径小于2 000μm,且仅在2个点位上监测到了粒径大于4 000μm的微塑料.微塑料呈现出纤维状、薄膜状、碎片状和颗粒状等4种形态,其中纤维状的微塑料占比最高(90.23%).微塑料以透明色和蓝色为主,共占比84.29%.人造丝的占比最高,且在各点位上的占比都在66.67%以上,而其他成分微塑料的分布在不同点位上存在较大的差异.无论是微塑料丰度还是成分种类,河流上游均高于下游.根据微塑料的形状、成分、颜色和丰度的空间特征,解析了不同类型微塑料的来源.对于河流中占比最高的纤维状微塑料,其主要来源可能为服装洗涤、渔具...  相似文献   
995.
郭霖  孟飞  马明亮 《环境科学》2022,43(7):3483-3493
深入了解大气气溶胶时空变化及其影响因素,对控制大气污染,改善大气环境具有重要意义.首先利用2013~2019年的VIIRS IP气溶胶光学厚度(AOD)数据分析华北平原AOD的时空变化规律.其次,选取SO2、 NO2、 PM2.5、气象数据、 NDVI、 DEM、 GDP和POPU作为影响因素,基于XGBoost模型分别建立华北平原5个代表城市的AOD与其影响因素之间的连接模型,定量估算并揭示AOD时空分布规律背后各个影响因素的贡献.结果表明在空间分布上,华北平原AOD以太行山脉为界,呈现东南高西北低的格局.在时间变化上,5个城市AOD年均值整体呈下降趋势,AOD月均值先上升后下降,最高值出现在7月,最低值出现在12月.此外,建立的华北地区5个城市AOD估算模型精度较高,R2在0.60~0.67之间.华北平原的AOD影响因素中,NO2和SO2是对5个城市AOD贡献最大的影响因素,此外,PM2.5是另外一种重要的污染排放影响因素.气象因...  相似文献   
996.
近年来,国务院颁布的《大气污染防治行动计划》和《打赢蓝天保卫战三年行动计划》对我国空气质量的全面改善起到了重要作用,然而,当前鲜有对四川盆地两大政策实施效果进行评估以及对政策实施后PM2.5化学组分新特征的针对性研究.2017年和2020年分别是两大污染减排政策实施效果评估的关键时期,为对两时期成都市大气PM2.5及其中碳质组分特征进行全面了解,分别于2016年10月至2017年7月和2020年12月在成都市区进行了PM2.5的连续采样,并对其中有机碳(OC)和元素碳(EC)进行了分析.结果表明:①2016~2017年成都市ρ(PM2.5)平均值为(114.0±76.4)μg·m-3,最高值出现在冬季,可达(193.3±98.5)μg·m-3,是浓度最低季节春季[(73.8±32.3)μg·m-3]的2.6倍,而这种严重的冬季污染在2020年出现了明显改善,对应的ρ(PM2.5)为(96.0±39.3)μg·m-3,降幅达50.3%.②2016~2017年ρ(OC)和ρ(EC)的平均值分别为(21.1±16.4)μg·m-3和(1.9±1.3)μg·m-3,分别占PM2.5的质量分数为18.5%和1.7%;ρ(OC)季节变化特征为:冬季[(40.6±21.5)μg·m-3]>秋季[(17.0±7.0)μg·m-3]>夏季[(14.4±3.9)μg·m-3]>春季[(12.6±6.0)μg·m-3],而各季节ρ(EC)水平接近(1.3~2.4 μg·m-3);二次有机碳(SOC)是OC的重要组成,可占OC的质量分数为44.5%.相比2016年冬季,2020年冬季ρ(OC)降至(19.2±9.1)μg·m-3,降幅达52.7%,EC则升高了26.1%.③随污染加重,各碳质组分及其贡献变化趋势各异,相比2016年冬季,2020年冬季OC随污染加重贡献更加趋于稳定,而SOC占比升高更为明显,二次有机组分贡献不容忽视.④各季节气团来向和污染物潜在源区均呈现出了明显差异;与2016年冬季相比,虽然2020年冬季主要气团来向未发生明显变化,但各轨迹对应的污染物浓度均出现了大幅降低,且污染物潜在源区向东部区域扩展明显.  相似文献   
997.
长江中游典型饮用水水源中药物的时空分布及风险评价   总被引:4,自引:4,他引:0  
采用固相萃取-高效液相色谱/串联质谱方法,分析长江中游典型饮用水水源中药物的季节变化和空间分布;结合风险熵方法,评价其对水生生物的生态风险.结果表明,80%的目标药物在饮用水水源中检出,浓度平均值在0.07~13.00 ng·L-1之间,与国内报道的其他饮用水水源相比,检出浓度处于中等偏低水平.不同药物表现出不同的时空分布,一般冬季的检出水平高于夏季,上下游之间没有显著性差异,可能与药物的季节性/区域性使用排放、流量对稀释作用的影响和温度对生物降解的影响有关.与新冠肺炎疫情前相比,长江中游典型饮用水水源中药物检出浓度较低,原因可能在于疫情防控一定程度上减少药物的使用排放,以及较高的降水量和径流量加强水流的稀释作用.目标药物特别是抗生素对水生生物(特别是藻类)具有中等或低风险,考虑到药物的生态风险、遗传毒性以及抗生素抗性基因的潜在风险,建议加强水环境中药物的调查、评估、治理和管控.  相似文献   
998.
根据临安市环境监测站2006-2016年里畈水库的监测数据,采用Mann-Kendall非参数统计检验法对里畈水库水质变化趋势进行分析.趋势分析表明,pH和溶解氧的值总体呈上升趋势,氨氮、总磷和高锰酸盐的值总体呈下降趋势,11年间里畈水库水质总体呈上升趋势;总磷是影响里畈水库水质类别的主要因素.对各参数突变次数及时间分析表明,总磷突变最为复杂;溶解氧和氨氮变化趋势最为简单;水质突变主要集中在2007年和2016年.  相似文献   
999.
研究河口感潮沼泽湿地土壤间隙水溶解性CO_2和CH_4浓度日动态对于揭示河口湿地碳循环过程具有重要作用.于2010年的4月4~5日和9月2~3日(小潮日)和4月14~15日和9月9~10日(大潮日),对闽江河口鳝鱼滩中部中高潮滩过渡区分布的短叶茳芏(Cyperus malaccensis)+芦苇(Phragmites australis)沼泽湿地的土壤间隙水溶解性CO_2和CH_4浓度进行24 h连续监测,并同步测定了原位土壤温度、电导率及NH+4-N等参数.结果表明:14月与9月大、小潮日土壤间隙水溶解性CH_4浓度日变化范围分别介于88.20~190.74、53.42~141.24、16.27~81.89和44.90~88.53μmol·L~(-1),其中4月大、小潮日土壤间隙水溶解性CH_4浓度均呈现昼低夜高特征(P0.05),而9月大、小潮日呈现相反的日变化趋势(P0.05);29月大、小潮日土壤间隙水溶解性CO_2浓度日变化范围分别介于19.33~40.1μmol·L~(-1)和9.69~29.96μmol·L~(-1),均呈现昼低夜高特征(P0.01);3涨潮期间土壤间隙水溶解性CO_2浓度均要低于涨潮前与落潮后,而涨潮期间土壤间隙水溶解性CH_4浓度高于涨潮前和落潮后.  相似文献   
1000.
2003~2014年东北三省气溶胶光学厚度变化分析   总被引:9,自引:5,他引:4  
利用2003~2014年MODIS-Aqua气溶胶光学厚度(AOD)产品、DMSP卫星夜间灯光时间资料和基本气象资料,分析我国东北三省(辽宁、吉林、黑龙江)大气气溶胶光学厚度年际变化及季节变化的空间分布特征.结果表明,东北三省多年平均AOD空间分布存在由大连、沈阳、长春和哈尔滨等城市构成的一个高值带,呈东北-西南走向,多年平均AOD值为0.4~0.8;东北三省植被覆盖率较高的东部和北部是AOD的低值区,多年平均AOD小于0.3;东北三省AOD季节变化为AOD春季到夏季升高,秋季下降,冬季再次升高.东北三省AOD年际变化特征为大部分低值地区呈减小趋势,但以沈阳、长春和哈尔滨为轴线的东北-西南走向的高值区域呈增大趋势,反映了近10多年出现的空气质量两极分化趋势.此外研究了东北三省年均AOD在强、弱西北太平洋夏季风年时的空间分布差异,受地面风场影响,AOD在强季风年时较弱季风年偏低.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号