首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15960篇
  免费   1828篇
  国内免费   6085篇
安全科学   3489篇
废物处理   402篇
环保管理   1942篇
综合类   11733篇
基础理论   2376篇
环境理论   2篇
污染及防治   1634篇
评价与监测   799篇
社会与环境   860篇
灾害及防治   636篇
  2024年   55篇
  2023年   468篇
  2022年   703篇
  2021年   830篇
  2020年   846篇
  2019年   808篇
  2018年   649篇
  2017年   700篇
  2016年   806篇
  2015年   880篇
  2014年   846篇
  2013年   1351篇
  2012年   1530篇
  2011年   1588篇
  2010年   1117篇
  2009年   1275篇
  2008年   980篇
  2007年   1279篇
  2006年   1236篇
  2005年   964篇
  2004年   836篇
  2003年   706篇
  2002年   586篇
  2001年   439篇
  2000年   445篇
  1999年   362篇
  1998年   246篇
  1997年   242篇
  1996年   183篇
  1995年   209篇
  1994年   160篇
  1993年   127篇
  1992年   106篇
  1991年   48篇
  1990年   41篇
  1989年   33篇
  1988年   23篇
  1987年   10篇
  1986年   13篇
  1984年   8篇
  1983年   12篇
  1982年   19篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   10篇
  1977年   5篇
  1973年   6篇
  1972年   8篇
  1971年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Carbon–silica materials with hierarchical pores consisting of micropores and mesopores were prepared by introducing nanocarbon microspheres derived from biomass sugar into silica gel channels in a hydrothermal environment.The physicochemical properties of the materials were characterized by nitrogen physical adsorption(BET),scanning electron microscopy(SEM),and thermogravimetric(TG),and the adsorption properties of various organic waste gases were investigated.The results showed that microporous carbon materials were introduced successfully into the silica gel channels,thus showing the high adsorption capacity of activated carbon in high humidity organic waste gas,and the high stability and mechanical strength of the silica gel.The dynamic adsorption behavior confirmed that the carbon–silica material had excellent adsorption capacity for different volatile organic compounds(VOCs).Furthermore,the carbon–silica material exhibited excellent desorption characteristics:adsorbed toluene was completely desorbed at 150℃,thereby showing superior regeneration characteristics.Both features were attributed to the formation of hierarchical pores.  相似文献   
92.
以华南稻田土壤为研究对象通过构建微宇宙体系,研究了淹水稻田自养硝酸盐还原耦合As(III)氧化过程及其微生物群落结构组成.结果表明,NO3-的添加促进了稻田土壤中As(III)的氧化,在未添加NO3-的处理(Soil+As(III))以及灭菌处理(Sterilized soil+As(III)+NO3-)中As(III)未发生明显的氧化;在Soil+As(III)+NO3-处理中,NO3-有少量被还原,而在Soil+NO3-处理中,NO3-没有被还原.通过16S rRNA高通量分析在NO3-还原耦合As(III)氧化体系中微生物群落结构特征,在Soil+As(III)+NO3-处理中shannon指数相对较低为8.19,土壤微生物群落多样性降低,其中在门水平上主要优势菌群为变形菌门Proteobacteria(33%)、绿弯菌门Chloroflexi(11%)、浮霉菌门Planctomycetes(12%);在属水平上主要的优势菌属为Gemmatimonas(7.4%)以及少量的Singulisphaera、Thermomonas、Bacillus.NO3-的添加能够促进稻田土壤中自养As(III)氧化,并且影响着稻田土壤中微生物群落组成.  相似文献   
93.
Glycine(Gly) is ubiquitous in the atmosphere and plays a vital role in new particle formation(NPF).However,the potential mechanism of its on sulfuric acid(SA)-ammonia(A)clusters formation under various atmospheric conditions is still ambiguous.Herein,a(Gly)_x·(SA)_y·(A)_z(z≤x+y≤3) multicomponent system was investigated by using density functional theory(DFT) combined with Atmospheric Cluster Dynamics Code(ACDC) at different temperatures and precursor concentrations.The results show that Gly,with one carboxyl(-COOH) and one amine(-NH_2) group,can interact strongly with SA and A in two directions through hydrogen bonds or proton transfer.Within the relevant range of atmospheric concentrations,Gly can enhance the formation rate of SA-A-based clusters,especially at low temperature,low [SA],and median [A].The enhancement(R) of Gly on NPF can be up to 340 at T=218.15 K,[SA]=10~4,[A]=10~9,and [Gly]=10~7 molecules/cm~3.In addition,the main growth paths of clusters show that Gly molecules participate into cluster formation in the initial stage and eventually leave the cluster by evaporation in subsequent cluster growth at low [Gly],it acts as an important "transporter" to connect the smaller and larger cluster.With the increase of [Gly],it acts as a "participator" directly participating in NPF.  相似文献   
94.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
95.
Silver nanoparticles(AgNPs) have been widely used in many fields,which raised concerns about potential threats to biological sewage treatment systems.In this study,the phosphorus removal performance,enzymatic activity and microbial population dynamics in constructed wetlands(CWs) were evaluated under a long-term exposure to Ag NPs(0,50,and 200 μg/L) for 450 days.Results have shown that Ag NPs inhibited the phosphorus removal efficiency in a short-term exposure,whereas caused no obviously negative effects from a long-term perspective.Moreover,in the coexisting CW system of Ag NPs and phosphorus,competition exhibited in the initial exposure phase,however,cooperation between them was observed in later phase.Enzymatic activity of acid-phosphatase at the moderate temperature(10–20°C) was visibly higher than that at the high temperature(20–30℃) and CWs with Ag NPs addition had no appreciable differences compared with the control.High-throughput sequencing results indicated that the microbial richness,diversity and composition of CWs were distinctly affected with the extension of exposure time at different Ag NPs levels.However,the phosphorus removal performance of CWs did not decline with the decrease of polyphosphate accumulating organisms(PAOs),which also confirmed that adsorption precipitation was the main way of phosphorus removal in CWs.The study suggested that Ag NPs and phosphorus could be removed synergistically in the coexistence system.This work has some reference for evaluating the influences of Ag NPs on the phosphorus removal and the interrelation between them in CWs.  相似文献   
96.
This study profiled the bacterial community variations of water from four water treatment systems, including coagulation, sedimentation, sand filtration, ozonation-biological activated carbon filtration (O3-BAC), disinfection, and the tap water after the distribution process in eastern China. The results showed that different water treatment processes affected the bacterial community structure in different ways. The traditional treatment processes, including coagulation, sedimentation and sand filtration, reduced the total bacterial count, while they had little effect on the bacterial community structure in the treated water (before disinfection). Compared to the traditional treatment process, O3-BAC reduced the relative abundance of Sphingomonas in the finished water. In addition, ozonation may play a role in reducing the relative abundance of Mycobacterium. NaClO and ClO2 had different effects on the bacterial community in the finished water. The relative abundance of some bacteria (e.g. Flavobacterium, Phreatobacter and Porphyrobacter) increased in the finished water after ClO2 disinfection. The relative abundance of Mycobacterium and Legionella, which have been widely reported as waterborne opportunistic pathogens, increased after NaClO disinfection. In addition, some microorganisms proliferated and grew in the distribution system, which could lead to turbidity increases in the tap water. Compared to those in the finished water, the relative abundance of Sphingomonas, Hyphomicrobium, Phreatobacter, Rheinheimera, Pseudomonas and Acinetobacter increased in the tap water disinfected with NaClO, while the relative abundance of Mycobacterium increased in the tap water disinfected with ClO2. Overall, this study provided the detailed variation in the bacterial community in the drinking water system.  相似文献   
97.
Because of its significant toxicological effects on the environment and human health,arsenic(As) is a major global issue.In this study,an Fe-based metal-organic framework(MOF)(Materials of Institut Lavoisier:MIL-100(Fe)) which was impregnated with reduced graphene oxide(rGO) by using a simple hydrothermal method and coated with birnessitetype manganese oxide(δ-MnO_2) using the one-pot reaction process(MIL-100(Fe)/rGO/δ-MnO_2 nanocomposites) was synthesized and applied successfully in As removal.The removal efficiency was rapid,the equilibrium was achieved in 40 min and 120 min for As(Ⅲ) and As(Ⅴ),respectively,at a level of 5 mg/L.The maximum adsorption capacities of As(Ⅲ) and As(Ⅴ) at pH 2 were 192.67 mg/g and 162.07 mg/g,respectively.The adsorbent revealed high stability in pH range 2-9 and saturated adsorbent can be fully regenerated at least five runs.The adsorption process can be described by the pseudo-second-order kinetic model and Langmuir monolayer adsorption.The adsorption mechanisms consisted of electrostatic interaction,oxidation and inner sphere surface complexation.  相似文献   
98.
Changes in water quality from source water to finished water and tap water at two conventional drinking water treatment plants(DWTPs) were monitored.Beside the routine water quality testing,Caenorhabditis elegans-based toxicity assays and the fluorescence excitation–emission matrices technique were also applied.Both DWTPs supplied drinking water that met government standards.Under current test conditions,both the investigated finished water and tap water samples exhibited stronger lethal,genotoxic and reprotoxic potential than the relative source water sample,and the tap water sample was more lethal but tended to be less genotoxic than the corresponding finished water sample.Meanwhile,the nearly complete removal of tryptophan-like substances and newly generated tyrosine-like substances were observed after the treatment of drinking water,and humic-like substances were identified in the tap water.Based on these findings,toxic pollutants,including genotoxic/reproductive toxicants,are produced in the drinking water treatment and/or distribution processes.Moreover,further studies are needed to clarify the potentially important roles of tyrosine-like and humic-like substances in mediating drinking water toxicity and to identify the potential sources of these contaminants.Additionally,tryptophan-like fluorescence may be adopted as a useful parameter to monitor the treatment performance of DWTPs.Our observations provided insights into the importance of utilizing biotoxicity assays and fluorescence spectroscopy as tools to complement the routine evaluation of drinking water.  相似文献   
99.
Based on density functional theory (DFT) and basic structure models, the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction (SCR) denitrification catalysts were summarized. Reasonable structural models (non-periodic and periodic structural models) are the basis of density functional calculations. A periodic structure model was more appropriate to represent the catalyst surface, and its theoretical calculation results were more comparable with the experimental results than a non-periodic model. It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2O follows an Eley-Rideal type mechanism. NH2NO was found to be an important intermediate in the SCR reaction, with multiple production routes. Simultaneously, the effects of H2O, SO2 and metal on SCR catalysts were also summarized.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号