首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   29篇
  国内免费   9篇
安全科学   3篇
废物处理   3篇
环保管理   9篇
综合类   21篇
基础理论   121篇
污染及防治   10篇
评价与监测   4篇
社会与环境   4篇
灾害及防治   7篇
  2023年   4篇
  2022年   5篇
  2021年   7篇
  2020年   9篇
  2019年   10篇
  2018年   5篇
  2017年   9篇
  2016年   11篇
  2015年   11篇
  2014年   12篇
  2013年   19篇
  2012年   8篇
  2011年   10篇
  2010年   17篇
  2009年   7篇
  2008年   2篇
  2007年   7篇
  2006年   1篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有182条查询结果,搜索用时 703 毫秒
161.
Abstract: The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life‐history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human‐induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long‐term persistence of a population.  相似文献   
162.
Short‐term surveys are useful in conservation of species if they can be used to reliably predict the long‐term fate of populations. However, statistical evaluations of reliability are rare. We studied how well short‐term demographic data (1999–2002) of tartar catchfly (Silene tatarica), a perennial riparian plant, projected the fate and growth of 23 populations of this species up to the year 2010. Surveyed populations occurred along a river with natural flood dynamics and along a regulated river. Riparian plant populations are affected by flooding, which maintains unvegetated shores, while forest succession proceeds in areas with little flooding. Flooding is less severe along the regulated river, and vegetation overgrowth reduces abundance of tartar catchfly on unvegetated shores. We built matrix models to calculate population growth rates and estimated times to population extinction in natural and in regulated rivers, 13 and 10 populations, respectively. Models predicted population survival well (model predictions matched observed survival in 91% of populations) and accurately predicted abundance increases and decreases in 65% of populations. The observed and projected population growth rates differed significantly in all but 3 populations. In most cases, the model overestimated population growth. Model predictions did not improve when data from more years were used (1999–2006). In the regulated river, the poorest model predictions occurred in areas where cover of other plant species changed the fastest. Although vegetation cover increased in most populations, it decreased in 4 populations along the natural river. Our results highlight the need to combine disturbance and succession dynamics in demographic models and the importance of habitat management for species survival along regulated rivers. Precisión de Datos Demográficos de Corto Plazo en la Proyección del Destino de Poblaciones a Largo Plazo  相似文献   
163.
In some fishes, water chemistry or temperature affects sex determination or creates sex‐specific selection pressures. The resulting population sex ratios are hard to predict from laboratory studies if the environmental triggers interact with other factors, whereas in field studies, singular observations of unusual sex ratios may be particularly prone to selective reporting. Long‐term monitoring largely avoids these problems. We studied a population of grayling (Thymallus thymallus) in Lake Thun, Switzerland, that has been monitored since 1948. Samples of spawning fish have been caught about 3 times/week around spawning season, and water temperature at the spawning site has been continuously recorded since 1970. We used scale samples collected in different years to determine the average age of spawners (for life‐stage specific analyses) and to identify the cohort born in 2003 (an extraordinarily warm year). Recent tissue samples were genotyped on microsatellite markers to test for genetic bottlenecks in the past and to estimate the genetically effective population size (Ne). Operational sex ratios changed from approximately 65% males before 1993 to approximately 85% males from 1993 to 2011. Sex ratios correlated with the water temperatures the fish experienced in their first year of life. Sex ratios were best explained by the average temperature juvenile fish experienced during their first summer. Grayling abundance is declining, but we found no evidence of a strong genetic bottleneck that would explain the apparent lack of evolutionary response to the unequal sex ratio. Results of other studies show no evidence of endocrine disruptors in the study area. Our findings suggest temperature affects population sex ratio and thereby contributes to population decline. Persistencia de Proporción de Sexos Desigual en una Población de Tímalos (Salmonidae) y el Posible Papel del Incremento de la Temperatura  相似文献   
164.
Abstract

A fluorometric method was developed to quantify glyphosate loss from glass surfaces after exposure to the natural forest environment. The method was based on the principle of converting glyphosate into glycine, followed by the fluorogenic labeling with o‐phthalaldehyde. A fluorometer (with λ Ex = 360 nm / λEm =430 nm) was used to quantify the derivatized fluorogenic compound. Response was linear over the concentration range of 143, 286, 572, 858 and 1144 μg of glyphosate (acid equivalent, AE) per mL of the diluted Vision® formulation. Three end‐use mixtures of Vision® were prepared, each at a concentration of 28.6 g AE/L, without and with two adjuvants, Ethomeen® T/25 at 4.5 mL/L and Silwet® L‐77 at 1.5 mL/L. Several dilutions of the end‐use mixtures were applied on glass slides without and with the coating of cuticular wax extracted from trembling aspen foliage. The slides were left for 5 days in a forest opening to determine rainfastness, volatilization and photostability of glyphosate. The residues were quantified using the method developed. Three calibration curves were required because Silwet decreased the fluorometric response of glyphosate, whereas Ethomeen increased it. The minimum detection limit was 143 μg of glyphosate/mL. Glyphosate was resistant to volatilization and sunlight‐mediated degradation, regardless of the presence of wax coating or the adjuvants. About 64% of the applied glyphosate was washed off after a 9.6 mm rainfall when no adjuvant was present. Both adjuvants provided some amount of rain‐protection to glyphosate, but Silwet reduced the washoff to a greater extent (46%) than Ethomeen (55%).  相似文献   
165.
Abstract: The fitness of species with little genetic diversity is expected to be affected by inbreeding and an inability to respond to environmental change. Conservation theory suggests that endangered species will generally demonstrate lower genetic diversity than taxa that are not threatened. This hypothesis has been challenged because the time frame of anthropogenic extinction may be too fast to expect genetic factors to significantly contribute. I conducted a meta‐analysis to examine how genetic diversity in 894 tetrapods correlates with extinction threat level. Because species are not evolutionarily independent, I used a phylogenetic regression framework to address this issue. Mean genetic diversity of tetrapods, as assessed by protein heterozygosity, was 29.7–31.5% lower on average in threatened species than in their nonthreatened relatives, a highly significant reduction. Within amphibians as diversity decreased extinction risk increased in phylogenetic models, but not in nonphylogenetic regressions. The effects of threatened status on diversity also remained significant after accounting for body size in mammals. These results support the hypothesis that genetic effects on population fitness are important in the extinction process.  相似文献   
166.
Although SO2 emissions and deposition rates havedeclined substantially since the implementation of sulphuremission control programmes in North America [1], recovery(measured as decreases in ontent/r211111857052274/10661_2004_Article_122443_TeX2GIFIE1.gif" alt=" $${\text{SO}}_{\text{4}}^{{\text{2 - }}} $$ " align="middle" border="0"> concentrations) of affected lakes in central Ontario has been much less substantial thananticipated based on the decrease in deposition. The slowrecovery is attributed to the reoxidation and release of storedsulphur in catchments. Reduced sulphur retained in previousyears when sulphur deposition was higher is exposed to air andoxidized during severe droughts, then exported duringsubsequent wet periods. Elevated stream ontent/r211111857052274/10661_2004_Article_122443_TeX2GIFIE2.gif" alt=" $${\text{SO}}_{\text{4}}^{{\text{2 - }}} $$ " align="middle" border="0"> concentrations and export rates occur in the autumns of yearswith prolonged severe droughts, particularly in catchments withextensive wetlands. Drought in our study catchments occurred inyears following strong El Niño events. When the SouthernOscillation Index (SOI) was strongly negative (1976–77, 1982–83,1986–87, 1991–92, 1993–94) the frequency of occurrence ofdrought the following summer in small catchments with shallowoverburden was extremely high. A lakeontent/r211111857052274/xxlarge8216.gif" alt="lsquo" align="BASELINE" BORDER="0">s rate of recovery fromacidification depends upon the amount of excess reduced Sthat has been stored in anoxic zones in the catchment (largely afunction of the extent of wetlands) during years of elevated Sdeposition rates, and the frequency and severity of droughts. Iflong-term changes in global or regional climate alter thefrequency or magnitude of El Niño-related droughts, therecovery of acidified lakes will be affected.  相似文献   
167.
依据企业资源理论与能力理论的具体研究成果,分析了企业安全能力与企业安全资源之间的关系,进而研究了企业安全能力进化的取向问题。探讨了企业中的安全资源和安全能力及其相互关系,并从安全能力进化取向、安全资源优势、企业竞争优势三者之间存在的内在联系,运用GRA(GrayRelationAnalysis)(灰色关联度分析)方法提出了一种企业安全能力进化取向的判定方法。该方法为企业如何利用有限的资金合理选择安全能力进化的取向,以及制定相应的安全资源积累的顺序,提供了一种理论依据。  相似文献   
168.
169.
Abstract: Freshwater biodiversity conservation is generally perceived to conflict with human use and extraction (e.g., fisheries). Overexploited fisheries upset the balance between local economic needs and endangered species’ conservation. We investigated resource competition between fisheries and Ganges river dolphins (Platanista gangetica gangetica) in a human‐dominated river system in India to assess the potential for their coexistence. We surveyed a 65‐km stretch of the lower Ganga River to assess habitat use by dolphins (encounter rates) and fishing activity (habitat preferences of fishers, intensity of net and boat use). Dolphin abundance in the main channel increased from 179 (SE 7) (mid dry season) to 270 (SE 8) (peak dry season), probably as a result of immigration from upstream tributaries. Dolphins preferred river channels with muddy, rocky substrates, and deep midchannel waters. These areas overlapped considerably with fishing areas. Sites with 2–6 boats/km (moderately fished) were more preferred by dolphins than sites with 8–55 boats/km (heavily fished). Estimated spatial (85%) and prey–resource overlap (75%) between fisheries and dolphins (chiefly predators of small fish) suggests a high level of competition between the two groups. A decrease in abundance of larger fish, indicated by the fact that small fish comprised 74% of the total caught, may have intensified the present competition. Dolphins seem resilient to changes in fish community structure and may persist in overfished rivers. Regulated fishing in dolphin hotspots and maintenance of adequate dry season flows can sustain dolphins in tributaries and reduce competition in the main river. Fish‐stock restoration and management, effective monitoring, curbing destructive fishing practices, secure tenure rights, and provision of alternative livelihoods for fishers may help reconcile conservation and local needs in overexploited river systems.  相似文献   
170.
Abstract: Protected areas must be close, or connected, enough to allow for the preservation of large‐scale ecological and evolutionary processes, such as gene flow, migration, and range shifts in response to climate change. Nevertheless, it is unknown whether the network of protected areas in the United States is connected in a way that will preserve biodiversity over large temporal and spatial scales. It is also unclear whether protected‐area networks that function for larger species will function for smaller species. We assessed the connectivity of protected areas in the three largest biomes in the United States. With methods from graph theory—a branch of mathematics that deals with connectivity and flow—we identified and measured networks of protected areas for three different groups of mammals. We also examined the value of using umbrella species (typically large‐bodied, far‐ranging mammals) in designing large‐scale networks of protected areas. Although the total amount of protected land varied greatly among biomes in the United States, overall connectivity did not. In general, protected‐area networks were well connected for large mammals but not for smaller mammals. Additionally, it was not possible to predict connectivity for small mammals on the basis of connectivity for large mammals, which suggests the umbrella species approach may not be an appropriate design strategy for conservation networks intended to protect many species. Our findings indicate different strategies should be used to increase the likelihood of persistence for different groups of species. Strategic linkages of existing lands should be a conservation priority for smaller mammals, whereas conservation of larger mammals would benefit most from the protection of more land.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号