首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   8篇
  国内免费   14篇
废物处理   2篇
环保管理   84篇
综合类   35篇
基础理论   9篇
污染及防治   6篇
评价与监测   2篇
灾害及防治   1篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2020年   8篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1987年   4篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1972年   3篇
  1971年   4篇
排序方式: 共有139条查询结果,搜索用时 26 毫秒
61.
中国地热资源特点与发展对策   总被引:6,自引:0,他引:6  
地热能是一种绿色低碳、可循环利用的可再生能源。中国地热资源丰富,以中低温资源为主,高温地热资源主要受中国地质构造特点及其在全球构造中所处部位的控制,主要集中在藏南-川西-滇西和台湾两个地区。但是,中国地热产业处在起步阶段,资源开发利用程度低,地热资源的利用绝大部分以直接利用为主,地热发电明显落后。针对中国地热资源开发利用存在的问题,提出了5 条促进地热产业发展的对策建议:建立国家级地热产业核心技术研发平台;尽快启动干热岩勘查开发利用示范工程建设;制订优惠扶持政策,推动地热产业步入快速发展轨道;积极推广地热尾水回灌技术,切实保护环境;尽快出台全国性的地热资源管理法规,以推动中国地热资源开发利用的法制化管理。  相似文献   
62.
ABSTRACT: Declining ground-water levels and spring discharges have heightened water user concerns about the sustainability of the Snake River Plain aquifer in southern Idaho. Diminished recharge from surface water irrigation and increased irrigation pumping have been depleting the aquifer at a rate of about 350,000 acre-feet/year. Previously, aquifer conditions were treated as an uncontrollable consequence of weather and development activities. With increasing competition for available water, the State appears to be progressing through a three-stage process of recharge management. The first stage is that which has occurred historically, where recharge is largely an incidental effect of surface water irrigation. The second stage is the implementation of intentional recharge with little regard to identifying or maximizing benefits. Idaho has been at this stage for the past few years. The State is entering a third stage in which recharge sites will be located and designed to meet specific water user and environmental objectives. Preliminary estimates using numerical and analytical models demonstrate that managed recharge within a few miles of the river will result in short-term increases in spring discharge. More distant recharge sites are needed to provide longer-term benefits. The primary challenge facing implementation of the managed recharge program will be the balancing of economic and environmental costs and benefits and to whom they accrue.  相似文献   
63.
ABSTRACT: To quantify and model the natural ground water recharge process, six sites located in the midwest and eastern United States where previous water balance observations had been made were compared to computerized techniques to estimate: (1) base flow and (2) ground water recharge. Results from an existing automated digital filter technique for separating baseflow from daily streamflow records were compared to baseflow estimates made in the six water balance studies. Previous validation of automated baseflow separation techniques consisted only of comparisons with manual techniques. In this study, the automated digital filter technique was found to compare well with measured field estimates yielding a monthly coefficient of determination of 0.86. The recharge algorithm developed in this study is an automated derivation of the Rorabaugh hydrograph recession curve displacement method that utilizes daily streamflow. Comparison of annual recharge from field water balance measurements to those computed with the automated recession curve displacement method had coefficients of determination of 0.76 and predictive efficiencies of 71 percent. Monthly estimates showed more variation and are not advocated for use with this method. These techniques appear to be fast, reproducible methods for estimating baseflow and annual recharge and should be useful in regional modeling efforts and as a quick check on mass balance techniques for shallow water table aquifers.  相似文献   
64.
ABSTRACT Raw sewage was metered into a newly-constructed lagoon of the Pima County Department of Sanitation, Tucson, Arizona. Seepage losses were calculated from data on inflow, evaporation and change in storage. Water samples were obtained from shallow suction cups, a 40 ft. and a 60 ft. PVC well and a 100 ft. access tube, all located inside the lagoon. Samples from these wells, together with water samples from the lagoon, were examined for conform organisms and various physical and chemical constituents. Of special concern were transformations in nitrogen. Estimated seepage rates in the lagoon during inundation ranged from 0.20 ft. per day to 0.10 ft. per day. Water level observations in wells reflected the percolation of effluent to the water table, 70 ft. below land surface. Initially, the nitrate ion levels in the suction cup samples were high, manifesting the leaching of indigenous soil nitrogen. With the onset of anaerobic conditions at the base of the lagoon, nitrification was inhibited at the soil surface and ammonia became the predominant form of nitrogen in the soil solution. Sorption of ammonium ion appeared to occur on clay particles in a soil zone of high cation exchange capacity. There were no undesirable microbial or chemical effects of recharge from lagoon seepage on native groundwater quality.  相似文献   
65.
太行山区水循环及其对华北平原地下水补给的研究   总被引:2,自引:0,他引:2  
山区水循环研究不仅对山区本身, 对与其相连的山前平原地下水的补给也具有重要意义。太 行山区作为华北平原的重要水源补给区, 其水循环现状以及对华北平原地下水的补给研究尚少, 许 多机理还不明确。研究通过阐述山区水循环过程与机理, 结合地处太行山中段的牛家庄实验流域的 实例研究, 对太行山区对华北平原地下水的补给过程进行了分析。2004 年4-11 月的研究结果表 明, 牛家庄流域对山前的侧向补给量为1.53×106m3, 补给系数(补给总量/降水总量)为0.242。流域的 下游补给系数最大, 中游次之, 上游最小。最后, 用概念模型对太行山区流域水循环机制和山前侧向 补给的机理进行了阐述。  相似文献   
66.
Maurer, Edwin P., Levi D. Brekke, and Tom Pruitt, 2010. Contrasting Lumped and Distributed Hydrology Models for Estimating Climate Change Impacts on California Watersheds. Journal of the American Water Resources Association (JAWRA) 46(5):1024–1035. DOI: 10.1111/j.1752-1688.2010.00473.x Abstract: We compare the projected changes to streamflows for three Sierra Nevada rivers using statistically downscaled output from 22 global climate projections. The downscaled meteorological data are used to drive two hydrology models: the Sacramento Soil Moisture Accounting model and the variable infiltration capacity model. These two models differ in their spatial resolution, computational time step, and degree and objective of calibration, thus producing significantly different simulations of current and future streamflow. However, the projected percentage changes in monthly streamflows through mid-21st Century generally did not differ, with the exceptions of streamflow during low flow months, and extreme low flows. These findings suggest that for physically based hydrology models applied to snow-dominated basins in Mediterranean climate regimes like the Sierra Nevada, California, model formulation, resolution, and calibration are secondary factors for estimating projected changes in extreme flows (seasonal or daily). For low flows, hydrology model selection and calibration can be significant factors in assessing impacts of projected climate change.  相似文献   
67.
Abstract: Interactions between surface irrigation water, shallow ground water, and river water may have effects on water quality that are important for both drinking water supplies and the ecological function of rivers and floodplains. We investigated water quality in surface water and ground water, and how water quality is influenced by surface water inputs from an unlined irrigation system in the Alcalde Valley of the Rio Grande in northern New Mexico. From August 2005 to July 2006, we sampled ground water and surface water monthly and analyzed for concentrations of major cations and anions, specific conductance, pH, dissolved oxygen, and water levels. Results indicate that irrigation ditch seepage caused an increase in ground water levels and that the Rio Grande is a gaining stream in this region. Temporal and spatial differences were found in ion concentrations in shallow ground water as it flowed from under the ditch toward the river. Ground‐water ion concentrations were higher when the ditch was not flowing compared with periods during peak irrigation season when the ditch was flowing. Ditch inputs diluted ion concentrations in shallow ground water at well positions near the ditch. Specifically, lower ion concentrations were detected in ground water at well positions located near the ditch and river compared with well positions located in the middle of an agricultural field. Results from this project showed that ditch inputs influenced ion concentrations and were associated with ground‐water recharge. In arid region river valleys, careful consideration should be given to management scenarios that change seepage from irrigation systems, because in some situations reduced seepage could negatively affect ground‐water recharge and water quality.  相似文献   
68.
以揭示回灌过程中CHCl3耦合胶体效应影响下的二次形成作用为研究目标,通过批实验分析有、无胶体条件下不同水化学条件对CHCl3生成速率及生成量的影响,并结合切向流超滤技术和原子力电镜扫描(AFM)表征手段分析CHCl3-SiO2胶体协同作用模式.结果表明,CHCl3的生成量随着反应时间的增加而增大,并在特定的反应时间内,高氯/TOC比率、高pH值、低离子强度均会促进CHCl3的二次形成.SiO2胶体的存在会影响反应前体物的吸附,使各时刻CHCl3生成作用均受到抑制,并对水中的CHCl3有强吸附作用.结果可为人工回灌过程中CHCl3的二次形成作用提供科学参考.  相似文献   
69.
通过室内砂柱实验及扫描电镜,红外光谱,光电子能谱等技术,研究回灌水中离子强度及回灌过程中水-岩作用对细菌在饱和多孔介质中迁移及滞留的影响,揭示回灌过程中离子强度对介质生物堵塞演化规律及其作用机理的影响.结果表明,适宜的离子强度刺激细菌的生长及胞外聚合物(EPS)的生成,导致介质渗透性下降幅度达到99%,离子强度过高或过低都会抑制微生物的生长;Na+可以中和介质与细菌表面的负电荷,通过压缩双电层及减少静电斥力,进而增强细菌在介质表面的附着能力;介质中的碳酸盐矿物水解可导致环境pH值升高,诱导介质中的微量SiO2,Al2O3等矿物溶解,促使介质孔隙度增大,延缓生物堵塞的发生时间并缓解堵塞程度;外源Na+及内源介质溶解产生的Ca2+,Mg2+,Al (III),刺激细菌产生更多的EPS,同时化学离子与EPS的官能团以新的官能团和化学键结合,形成新的物质,对堵塞的发生和演化起促进作用;溶解产生的Mg2+,Ca2+与细菌呼吸产生的CO2,在微碱性条件下反应形成新的沉淀,也对堵塞产生促进作用.  相似文献   
70.
Stephens, Daniel B., Mark Miller, Stephanie J. Moore, Todd Umstot, and Deborah J. Salvato, 2011. Decentralized Groundwater Recharge Systems Using Roofwater and Stormwater Runoff. Journal of the American Water Resources Association (JAWRA) 48(1): 134‐144. DOI: 10.1111/j.1752‐1688.2011.00600.x Abstract: Stormwater capture for groundwater recharge in urban areas is usually conducted at the regional level by water agencies. Field and modeling studies in New Mexico indicate that stormwater diverted to retention basins may recharge about 50% of precipitation that falls on the developed area, even in dry climates. Comparable volumes of recharge may be expected at homes, subdivisions, or commercial properties with low‐impact development (LID) technologies for stormwater control that promote recharge over evapotranspiration. Groundwater quality has not been significantly impacted at sites that have been recharging stormwater to aquifers for decades. Distributed recharge systems may be a good alternative to centralized regional facilities where there is limited land for constructing spreading basins or little funding for new infrastructure. LID technologies borrowed from stormwater managers are important tools for groundwater managers to consider to enhance recharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号