首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   43篇
  国内免费   125篇
安全科学   14篇
废物处理   71篇
环保管理   11篇
综合类   184篇
基础理论   32篇
污染及防治   63篇
评价与监测   2篇
  2024年   1篇
  2023年   6篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   8篇
  2018年   13篇
  2017年   2篇
  2016年   10篇
  2015年   28篇
  2014年   24篇
  2013年   16篇
  2012年   34篇
  2011年   19篇
  2010年   15篇
  2009年   20篇
  2008年   7篇
  2007年   22篇
  2006年   36篇
  2005年   29篇
  2004年   16篇
  2003年   20篇
  2002年   13篇
  2001年   7篇
  2000年   8篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
排序方式: 共有377条查询结果,搜索用时 406 毫秒
81.
球形复合无机离子交换剂的制备及其对Sr2+和Cs+的去除   总被引:3,自引:0,他引:3  
用溶胶-凝胶的方法制备了水合二氧化钛-水合五氧化二锑(HTO-HAP)球形复合无机离子交换剂,研究了其对Sr^2 和Cs^ 的离子交换性能,并对其组成,结构及稳定性作了初步的研究。结果表明,此种球形交换剂机械强度好,适合装柱,在弱酸性条件下对Sr^2 和Cs^ 有较好的交换容量。  相似文献   
82.
甲醛光催化降解与过氧化氢生成的相关性研究   总被引:2,自引:0,他引:2  
分别采用两种光催化剂(TiO2与Pd/TiO2)和三种紫外光源(黑光灯、杀菌灯、臭氧灯)分解水溶液中的甲醛,同时以酶法测定光催化降解过程中生成的低浓度过氧化氢.发现波长较短的紫外光源生成过氧化氢的浓度较高.当以臭氧灯为光源时,无论是否有催化剂存在,生成的过氧化氢浓度都在50mmol·m-3以上,因为185nm以下的紫外光可以直接由水与溶解氧生成臭氧,而后生成过氧化氢.不管有无催化剂存在,在臭氧灯作用下,甲醛溶液中生成的过氧化氢浓度高于纯水中生成的过氧化氢浓度.但是,在以黑光灯或臭氧灯为光源时,上述结果正好相反.此外,对于每种光源而言,当采用Pd/TiO2代替TiO2时,甲醛的分解和过氧化氢的生成都得到加强.甲醛光催化分解速率与相同条件下纯水中过氧化氢的生成速率呈正比,表明光催化降解的活性与光催化生成过氧化氢的能力近似呈正相关.  相似文献   
83.
纳米TiO_2(n TiO_2)具有广泛的应用价值.但n TiO_2在阳光或紫外线下具有很强的氧化作用,可对细胞产生强烈的毒害作用,因此其对生态环境的可能破坏作用值得关注.有关n TiO_2在暗环境中对生物的毒性作用报道还不多,还不能全面揭示n TiO_2的毒性作用机理.代谢组学分析是发现代谢差异、识别被干扰的代谢途径、了解n TiO_2毒性作用机理、评估n TiO_2细胞毒性的重要手段.本文采用GC/MS(气相色谱/质谱)技术检测了n TiO_2在暗环境下对多头绒泡菌原质团(单细胞)代谢组的影响,根据多变量识别模式分析发现了60余个被n TiO_2显著干扰的代谢物.这些代谢物涉及糖代谢、氨基酸代谢、核苷酸代谢、多胺生物合成、次生代谢途径等,为全面了解n TiO_2对细胞的毒性作用机理提供了有益补充.  相似文献   
84.
采用电-多相臭氧催化(E-catazone)技术处理高COD、高含盐、难生化的金刚烷胺制药废水.对比研究电-多相臭氧催化、多相臭氧催化(Catazone)、电催化氧化(EO)对金刚烷胺制药废水的处理效果,在此基础上进一步研究了电流密度、pH值以及气相O3浓度对电-多相臭氧催化技术处理效果的影响,同时优化实验条件.实验结果表明,在原水pH值为12.5,电流密度为15mA/cm2,O3进气流速0.4L/min,O3浓度为60mg/L的条件下,经过60min反应,电-多相臭氧催化技术获得了62%的COD去除和44%的总有机碳(TOC)去除,其效果显著优于多相臭氧催化(COD 44%,TOC 29%)与电催化氧化(COD 13%,TOC 17%);同时,电-多相臭氧催化不仅氧化能力强,而且氧化速率快,获得的伪一级COD去除速率常数k是多相臭氧催化和电催化氧化的1.81倍和8.22倍,更为重要的是,电-多相臭氧催化技术还可以高效、快速地提高废水的生化性,提高约2个数量级,结果表明,电-多相臭氧催化技术是一种有潜力的高级氧化技术,可以实现高效、快速去除有机污染物以及提高废水的可生化性.  相似文献   
85.
本文以成都科亿达自动化工程有限公司气象色谱实验室GC-2000离子迁移气相色谱仪为例,简要分析了氚钛靶放射源在气象色谱实验中的应用,并通过监测数据分析其电离辐射环境影响.  相似文献   
86.
钛白石膏是硫酸法钛白粉厂在酸性废水中和处理过程中产生的固体废物,是一种有毒有害废物.对某钛白粉厂排放的该固废进行腐蚀性、浸出毒性、急性毒性以及毒性物质含量鉴别,结果表明,该固废不属于危险废物.根据现阶段资源化利用和无害化处置技术水平和该钛白粉厂排放实际情况,结合当地土地开发利用状况,提出用于已围滩涂填方的处置对策方案,既使钛白石膏得到无害化处置,又能满足围垦造地对塘渣的需求,一举两得.  相似文献   
87.
TiO2光催化降解PFOA的反应动力学及机制研究   总被引:6,自引:6,他引:0  
全氟辛酸(PFOA)是一种新的持久性有机污染物,其处置技术是研究的热点.以UV254 nm紫外灯为光源,采用商品TiO2(P25)对PFOA进行光催化降解实验,并考察pH、TiO2用量、初始浓度、反应气氛对降解的影响.结果表明,反应符合准一级动力学方程,pH对反应有重要影响,氧气存在下能提高反应效率.在pH为3,TiO2用量为1.5 g·L-1,通入空气条件下反应7 h实现基本降解,速率常数为0.4206 h-1.投加俘获剂实验表明,空穴(h+)是主要的活性物质,其对反应速率贡献率为66.1%;羟基自由基(·OH)也参与PFOA的降解过程;投加NaF实验表明,PFOA在TiO2上吸附是反应发生的首要条件.UPLC-QTOF/MS分析表明,PFOA光催化降解逐级生成短链全氟羧酸(PFCAs).  相似文献   
88.
3,5-二硝基水杨酸表面修饰纳米Ti2吸附对硝基苯酚   总被引:1,自引:1,他引:0  
化学吸附法合成3,5-二硝基水杨酸表面修饰的TiO2纳米粒子,TiO2表面修饰后呈浅黄色,TiO2表面羟基与3,5-二硝基水杨酸发生类似于醇和酸间的酯化反应.表层链接有苯环,极性减弱,非极性增强,在水、苯、乙醇中均分散性良好,与芳香族污染物的亲合力增强,有利于吸附去除芳香族污染物.表面修饰的TiO2纳米粒子20mg,在最佳吸附pH值3、吸附时间10min,对100mL对硝基苯酚(3~10 mg/L)的吸附率可由改性前的43%增至99.9%.该法吸附效率高,可直接达到一级排放标准,提供了深度处理对硝基苯酚废水的新方法.  相似文献   
89.
Background, Aim and Scope The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. Materials and Methods: An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC–UV) at regular time intervals under simulated sunlight. Results: The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. Discussion: The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. Conclusions: It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. Recommendations and Perspectives: To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described experiments features very good degradation of RDX under simulated sunlight, and the manufacturing costs are rather low (around 10 Euro/m2). Moreover, the degradation efficiency is higher compared to that of the biological method. This method exhibits great potential for practical applications owing to its easiness and low cost. If it can be applied extensively, the efficiency of wastewater treatment will be enhanced greatly.  相似文献   
90.
目的 针对发动机钛合金部件在热盐环境与工作载荷下的寿命衰减问题,开展TC11钛合金热盐腐蚀疲劳与应力腐蚀试验,研究腐蚀环境下TC11的高温寿命衰减规律与失效机理。方法 利用喷盐法制备TC11钛合金试验件,研究不同温度与应力水平对TC11腐蚀疲劳以及应力腐蚀的影响规律。利用SEM等观测手段,开展腐蚀疲劳以及应力腐蚀试样断口与表面的形貌分析,分析腐蚀环境下的失效机理。结果 热盐腐蚀环境导致TC11的寿命显著降低,对比450 ℃下无腐蚀寿命,腐蚀疲劳寿命下降了2个数量级,应力腐蚀寿命下降到不足1%,且分散性较大。观察腐蚀疲劳和应力腐蚀的试样可以发现,表面有明显的腐蚀坑,腐蚀坑底发现裂纹。结论 热盐环境下,TC11腐蚀疲劳寿命和应力腐蚀寿命都会明显下降。由于腐蚀导致钛合金试样表面产生许多腐蚀坑,在腐蚀坑局部形成近似缺口,缺口部位的应力集中是导致腐蚀疲劳寿命衰减的重要因素。腐蚀疲劳的寿命低于Kt=1的无腐蚀疲劳寿命,但是要大于Kt=3的无腐蚀疲劳寿命。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号