首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   85篇
  国内免费   235篇
安全科学   48篇
废物处理   8篇
环保管理   68篇
综合类   437篇
基础理论   88篇
环境理论   1篇
污染及防治   21篇
评价与监测   56篇
社会与环境   59篇
灾害及防治   20篇
  2024年   6篇
  2023年   23篇
  2022年   33篇
  2021年   55篇
  2020年   52篇
  2019年   38篇
  2018年   28篇
  2017年   31篇
  2016年   30篇
  2015年   33篇
  2014年   33篇
  2013年   61篇
  2012年   56篇
  2011年   45篇
  2010年   38篇
  2009年   24篇
  2008年   31篇
  2007年   36篇
  2006年   16篇
  2005年   18篇
  2004年   14篇
  2003年   22篇
  2002年   7篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   3篇
  1997年   9篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有806条查询结果,搜索用时 21 毫秒
741.
利用2017年10月~2018年8月的PM10、PM2.5、PM1质量浓度数据以及NCEP全球再分析气象资料,分析乌鲁木齐市区和南郊山区颗粒物浓度变化特征,结合HYSPLIT后向轨迹模型、潜在源贡献因子分析(PSCF)以及浓度权重轨迹分析(CWT)分析市区颗粒物潜在源区.研究结果表明:①市区PM2.5的超标天数为26d,南郊山区无PM2.5超标,市区PM10的超标天数是南郊山区的3.5倍,市区日均值及月均值质量浓度是南郊山区的2~7倍,市区呈现冬高夏低的季节特征,南郊山区春季最高;②乌鲁木齐市区PM10日变化存在3个峰值,PM2.5、PM1为双峰型分布,南郊山区均呈双峰分布;并存在季节性周末效应;③长短两支聚类气流轨迹对乌鲁木齐市区颗粒物浓度影响较大,春夏气流来自中亚,秋冬来源于北疆周边地区;④颗粒物潜在源区分布季节特征显著,高值区主要为昌吉、巴州、吐鲁番等周边地区,西北部中亚地区也是颗粒物重要来源区域之一.  相似文献   
742.
卧龙自然保护区土壤中有机氯农药的来源分析   总被引:2,自引:0,他引:2  
为了判断清洁地区有机氯农药的来源,选择四川西部山区卧龙自然保护区高海拔点位的土壤样品,利用GC-HRMS方法测定有机氯农药的残留量. 卧龙土壤中w(HCHs)和w(DDTs)分别为(0.42±0.23)和(0.51±0.35) ng/g,比典型污染土壤低1~2个数量级. 利用聚类分析方法对浓度归一化数据进行分析,结果表明:卧龙土壤中HCHs的化学组成特征与典型污染土壤不同,而与典型大气样品相似;DDTs的组成特征在典型土壤和大气中没有稳定的显著差异. 结合有机氯农药的浓度水平、空间分布和物理化学性质进行分析,结果表明,大气传输过程的贡献可能是卧龙地区生态系统中HCHs以及其他有机氯农药的主要来源.   相似文献   
743.
以2021年3月青岛市空气自动站监测数据为依据,借助环境气象激光雷达、气溶胶激光雷达、在线离子色谱仪等技术手段,并利用后向轨迹模式(HYSPLIT)对青岛市一次PM_(2.5)和沙尘混合空气污染过程、气象条件、颗粒物组成以及传输路径等进行了综合分析。结果表明:静小风、湿度大、垂直方向逆温以及高空多次向近地面的污染物输送是第1阶段PM_(2.5)污染的主要原因,NO^(-)_(3)、SO^(2-)_(4)、NH^(+)_(4)浓度分别占水溶性离子浓度总和的51.7%,24.8%,22.4%,三者之和占ρ(PM_(2.5))的52.3%,机动车源、工业源和燃烧源贡献较大,其中尤以机动车源影响最显著;第2阶段各子站颗粒物浓度变化呈现明显的传输特征,PM_(2.5)中Ca^(2+)浓度升至第1阶段的6倍,沙尘源影响显著,污染气团主要来自蒙古国和我国内蒙古,前期由西北地区直接到达青岛,后期是经渤海湾、烟台到达青岛东南海域,最后回流至青岛;冷高压强度较弱导致近地面水平扩散条件不利,ρ(PM_(10))长时间维持在较高水平。  相似文献   
744.
基于气流轨迹聚类的大气污染输送影响   总被引:23,自引:6,他引:17  
基于中尺度气象预报模式(MM5)、混合单粒子拉格朗日积分(HYSPLIT)轨迹模式模拟和K均值聚类算法,利用气流轨迹聚类判断不同尺度大气输送型对城市空气的质量影响. 采用MM5模式对2006年珠江三角洲地区四季代表月(1,4,7,10月)的气象场进行了模拟,将模拟结果输入到HYSPLIT模式中,以计算广州市上空气团每日逐时的12 h后向轨迹;利用K均值聚类算法按轨迹移动方向和速度将各月气流轨迹线聚为有代表性的5类,计算各类输送型出现时段广州市ρ(PM10)和ρ(SO2)的平均值. 结果表明,珠江三角洲地区低层大气输送季节性变化明显,按输送特征及其对城市污染物浓度的影响差异,可将输送型分为局地输送、城市间输送和远距离输送3类. 结合污染源排放清单得出的污染源空间分布,分析结果表明,广州市大气污染较重时段主要受特殊气象条件和珠江三角洲地区周边城市排放源的影响,本地源排放与周边城市污染物输送的叠加使大气污染加重.   相似文献   
745.
天津PM10和NO2输送路径及潜在源区研究   总被引:2,自引:0,他引:2  
王郭臣  王珏  信玉洁  陈莉 《中国环境科学》2014,34(12):3009-3016
利用HYSPLIT模型和全球资料同化系统(GDAS)气象数据,用聚类方法对2012年12月~2013年11月期间抵达天津的逐日72h气流后向轨迹按不同的季节进行归类.并利用相应的PM10和NO2浓度日监测数据,分析了不同季节气流轨迹对天津污染物浓度的影响.运用潜在源贡献(PSCF)因子分析法和浓度权重轨迹(CWT)分析法分别模拟了不同季节PM10和NO2潜在PSCF和CWT.结果表明,不同方向气流轨迹对天津PM10和NO2潜在源区分布的影响存在显著差异.天津PM10和NO2日均浓度最高值对应的气流轨迹均集中在冬、春和秋季等来自内陆的西北气流;夏季影响天津的气流轨迹主要来自西北和东南方向,对天津PM10和NO2的日均浓度贡献较小.天津PM10和NO2的PSCF与CWT分布特征类似,最高值主要集中在天津本地以及邻近的河北省和山东省,是天津这两种污染物主要潜在源区.  相似文献   
746.
东北地区土壤湿度的区域性预报模型研究   总被引:3,自引:0,他引:3  
基于东北地区近30 a(1981-2010 年)土壤湿度观测资料,采用CAST聚类方法进行土壤湿度区划,对各区域土壤湿度的时空变化特征展开分析,建立土壤湿度的分区预报模型。结果表明:东北地区中部的土壤湿度在近30 a 内呈上升趋势,其余部分则呈下降趋势,但北部的下降趋势较小,西部下降趋势较大;各区域土壤湿度的显著影响因子有所差异,但都与前一旬的土壤湿度和降水量有较大的相关性;利用1981-2007 年的数据建立各区域的土壤湿度预报方程,利用2008-2010 年的数据对预报方程进行检验,土壤湿度的预报平均相对误差小于13.67%,预测值与观测值较为接近,基本可反映土壤湿度的实际变化情况。  相似文献   
747.
利用南京大学城市大气环境观测站(32°03′20″N,118°46′32″E)2011年1~12月一氧化碳(CO)连续观测资料,分析南京市CO浓度变化特征;利用后向轨迹模式和聚类分析方法研究影响南京市的主要气团及其化学性质;基于MOPITT资料分析南京市CO的垂直分布.研究表明,南京市CO的年均浓度为(757.5±410.5)×10-9.CO浓度具有明显日变化特征,早上8:00浓度最高,下午16:00浓度最低.CO日变化具有季节差异性,春季最为明显,夏季幅度最小.一周之中CO在周五的浓度最高.CO存在明显季节变化,冬季1月浓度最高,夏季6月浓度最低.HYSPLIT4把影响该观测站的主要气团分为6类,其中来自江苏南部、浙江、上海的气团的污染物浓度最高,对南京市CO浓度贡献最大;源于西伯利亚高原,伴随强冷空气迅速向南移动的气团对南京市CO贡献最小.卫星数据分析结果表明,南京市夏季CO的垂直分布与其他3个季节有较大差异.与地面观测站相比,卫星反演的CO地面浓度要明显偏低.  相似文献   
748.
利用轨迹模式研究上海大气污染的输送来源   总被引:15,自引:0,他引:15  
王茜 《环境科学研究》2013,26(4):357-363
利用HYSPLIT4模式和全球资料同化系统(GDAS)气象数据,计算了2010年12月─2011年11月期间抵达上海的气流后向轨迹. 结合聚类方法和上海ρ(SO2)、ρ(NO2)、ρ(PM10)数据,分析了各季节不同类型气流轨迹对污染物浓度的影响,利用引入权重因子后的潜在源贡献算法分析了不同季节PM10和NO2潜在WPSCF(源区分布概率)特征. 结果表明:上海气流输送季节变化特征明显. 冬、春和秋季,上海较易受到来自西北、西南等区域的大陆性气流影响,受沙尘或人为污染排放的影响相对较大,ρ(PM10)、ρ(SO2)和ρ(NO2)平均值相对较高,分别为162、74和53μg/m3. 夏季上海主要受较清洁的海洋性气流影响,ρ(PM10)、ρ(SO2)和ρ(NO2)相对较低,分别为47、19和36μg/m3. 上海PM10和NO2的WPSCF分布特征类似,在冬、春和秋季,WPSCF高值(0.2~0.4)主要集中在江苏南部,河南、安徽等地的带状区域也有一定贡献,说明这些区域是上海这2种污染物的潜在源区. 夏季WPSCF的分布较为集中,上海以外区域值基本小于0.1,说明外来污染输送的贡献较小.   相似文献   
749.
Chemical industrial areas or so-called chemical clusters consist of hundreds, and sometimes thousands, of chemical installations situated next to each other. Such areas can thus be seen as the summation of a large number of structures exhibiting danger to a certain degree for initiating or continuing accident domino effects or knock-on effects. In this article, an approach to investigate in a systemic way the vulnerability of each installation within the larger chemical cluster context, is developed. Our suggested method results in a prioritization of chemical installations with respect to their vulnerability for domino effects. The method can be used for intelligently designed protection of chemical industrial areas against terrorist attacks.  相似文献   
750.
An essential component of disaster planning and preparation is the identification and selection of temporary disaster debris management sites (DMS). However, since DMS identification is a complex process involving numerous variable constraints, many regional, county and municipal jurisdictions initiate this process during the post‐disaster response and recovery phases, typically a period of severely stressed resources. Hence, a pre‐disaster approach in identifying the most likely sites based on the number of locational constraints would significantly contribute to disaster debris management planning. As disasters vary in their nature, location and extent, an effective approach must facilitate scalability, flexibility and adaptability to variable local requirements, while also being generalisable to other regions and geographical extents. This study demonstrates the use of binomial cluster analysis in potential DMS identification in a case study conducted in Hamilton County, Indiana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号