首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
安全科学   1篇
废物处理   1篇
环保管理   17篇
综合类   2篇
基础理论   14篇
社会与环境   1篇
  2020年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有36条查询结果,搜索用时 28 毫秒
11.
Solar energy is one of the most important renewable energy sources, but it is not available every time and every season. Thus, storing of solar energy is important. One of the popular methods of heat storage is use of phase change materials (PCMs) which have large thermal energy storage capacity. In this study, the heat storage tank in a domestic solar water heating system was chosen as control volume. The experiments were performed in the province of Elaz?g, Turkey, in November when solar radiation was weak due to cloudy sky. The heat storage tank of the system was modified to fill PCM between insulation and hot water part. A few PCMs which are Potassium Fluoride, Lithium Metaborate Dihydrate, Strontium Hydroxide Octahydrate, Barium Hydroxide Octahydrate, Aluminum Ammonium Sulfate, and Sodium Hydrogen Phosphate were analyzed to proper operating conditions using a Differential Scanning Calorimeter (DSC) and the best PCM was obtained with the Aluminum Ammonium Sulfate and Sodium Hydrogen Phosphate mixture. Thus, eutectic PCM was obtained and used in a heat storage tank of the solar water heating system. Energy and exergy analysis of heat storage tank was performed with and without the PCM. Energy and exergy analysis has shown that the heat storage tank with the PCM is more efficient than without the PCM and the maximum exergy efficiency was obtained as 22% with the heat storage tank with the PCM.  相似文献   
12.
The effect of the integration of Solid Oxide Fuel Cell (SOFC) technology in a sugar-ethanol factory on the environmental profile/footprint of the products (sugar, ethanol, electricity) is evaluated. The sugarcane is the primary feedstock and sugar, ethanol and electricity are the main products of the system, where the functional unit is defined as 9.86 ton/h of sugar, 2.195 ton/h of hydrated ethanol (96% w/w) and 847 kWh of electricity. A detailed set of material and energy inputs and outputs was obtained from a local factory and was completed using simulation data by Aspen Plus®.The environmental impacts (greenhouse gases and air pollution), exergy efficiency and a renewability parameter have been considered as indicators for the comparative assessment with conventional sugar, ethanol and electricity production technologies. The results show that the use of a SOFC technology involves a reduction of greenhouse gas emissions (52-55%) and non-renewable resources (60-64%) when compared with the conventional integrated sugar and ethanol plant. The higher renewability index (0.93) and exergy efficiency (38%) are noticed for the Solid Oxide Fuel Cell technology integrated in the sugar-ethanol factory than conventional sugar-ethanol plant.  相似文献   
13.
Crucial to the method of emergy synthesis are the main driving emergy flows of the geobiosphere to which all other flows are referenced. They form the baseline for the construction of tables of Unit Emergy Values (UEVs) to be used in emergy evaluations. We provide here an updated calculation of the geobiosphere emergy baseline and UEVs for tidal and geothermal flows. First, we recalculate the flows using more recent values that have resulted from satellite measurements and generally better measurement techniques. Second, we have recalculated these global flows according to their available energy content (exergy) in order to be consistent with Odum's (1996) definition of emergy. Finally, we have reinterpreted the interaction of geothermal energy with biosphere processes thus changing the relationship between geothermal energy and the emergy baseline. In this analysis we also acknowledge the significant uncertainties related to most estimates of global data. In all, these modifications to the methodology have resulted in changes in the transformities for tidal momentum and geothermal energy and a minor change in the emergy baseline from 15.8E24 seJ/J to 15.2E24 seJ/J. As in all fields of science basic constants and standards are not really constant but change according to new knowledge. This is especially true of earth and ecological sciences where a large uncertainty is also to be found. As a consequence, while these are the most updated values today, they may change as better understanding is gained and uncertainties are reduced.  相似文献   
14.
15.
Taking 29 Chinese lakes and 29 Italian lakes as two separate case studies, the paper presented the variations of exergies and structural exergies along eutrophication gradients in Chinese and Italian lakes. The exergies (Ex) and structural exergies (Exst) were calculated based on phytoplankton biomass (BA) and zooplankton biomass (BZ). A trophic state index (TSI) scaling from 0 to 100 was developed to classify trophic status for Chinese and Italian lakes based on three indicators, chlorophyll-a concentration (Chl-a, in mg/m3), total phosphorus (TP in mg/m3) and transparency in Secchi disk depth (SD in m). The relationships between TSI and Ex, Exst, total biomass, BZ/BA ratios were analyzed. The following results were obtained: (1) with the increase of TSI in Chinese and Italian lakes, there is an increasing trend for Ex, and a decreasing trend for Exst, generally. The obvious negative correlations exist between TSI and Exst, at the significant level of 0.01 for Italian lakes, and 0.05 for Chinese lakes. The obvious positive correlations exist between TSI and Ex, at the significant level of 0.01 for Chinese lakes, and for Italian lakes in Spring, Autumn and the all-year. (2) The structural exergy is more dependent on the ratio of phytoplankton biomass to zooplankton biomass (BZ/BA) than the exergy, and the exergy is more dependent on total biomass than the structural exergy. (3) The phytoplankton biomass (BA) and zooplankton biomass (BZ) are increased with the increasing TSI in Chinese and Italian lakes, and phytoplankton biomass (BA) increases more rapidly then zooplankton biomass (BZ) does. This results in the definite decrease of BZ/BA ratio with the increasing trophic status index. Such changes of BA, BZ and BZ/BA ratio could explain successfully the variations of exergies and structural exergies along eutrophication gradients in Chinese and Italian lakes. From the two separate case studies of Chinese lakes and Italian lakes, it could be concluded that exergy and structural exergy are feasible to serve as the system-level ecological indicators to give appropriate information on the trophic status of different lakes.  相似文献   
16.
17.
Extended Exergy Accounting (“EEA”) is a method to compute the space- and time integral of the primary exergy required to produce a good or a service: the extended exergy of a commodity measures its “embodied exergy”, including externalities (Labour, Capital and Environmental Costa). A crucial point of the method is the calculation of two econometric coefficients, commonly referred to as “α” and “β”,used to calculate the extended exergy equivalents of Labour and Capital respectively. In previous applications of the EEA method, these coefficients have been assigned approximate values estimated on the basis of global system considerations. In this paper, a novel procedure is described that leads to the calculation of “exact” values of both econometric coefficients, based on detailed exergy- and monetary balances of the Society to which the EEA is applied. It is shown that both α and β depend in a non-trivial way from the consumption patterns, the technological level and the life- and socio-economic standards of each Country. It is also shown that the values are substantially different for developed (OECD) and underdeveloped Countries, and representative samples of values are calculated and critically analysed. On the basis of these new model coefficients, the specific exergy equivalents of Labour (eeL) and of Capital (eeK) are calculated, and shown to differ from the values used in previous EEA calculations.  相似文献   
18.
The human population is rising and the availability of terrestrial land and its resources are finite and, perhaps, not sufficient to deliver enough food, energy, materials and space. Thus, it is important to (further) explore and exploit the marine environment which covers no less than 71% of the earth's surface. The marine environment is very complex but can roughty be divided into two systems: natural (e.g. wild fishing) and human-made (e.g. artificial islands). In this study, characterization factors (CF) for natural and human-made marine systems were calculated in order to be able to assess the environmental impact of occupying marine surfaces, which was not possible so far in life cycle assessment. When accounting for natural resources while occupying one of these systems, it is important to consider the primary resources that are actually deprived from nature, which differs between the natural and human-made marine systems.In natural systems, the extracted biomass was accounted for through its exergy content, which is the maximum quantity of work that the system can execute in its environment. Reference flows for marine fish, seaweeds, crustaceans and mollusks were proposed and their correlated CF was calculated. For human-made systems, the deprived land resource is, in fact, the occupied area of the marine surface. Based on potential marine net primary production data (NPP), exergy based spatial and temporal CFs for ocean areal occupation were calculated. This approach was included in the Cumulative Exergy Extraction from the Natural Environment (CEENE) method which makes it the first life cycle impact assessment (LCIA) method capable of analyzing the environmental impact (and more specific the resource footprint) of marine areal occupation. Furthermore, the methodology was applied to two case studies: comparing resource consumption of on- and offshore oil production, and fish and soybean meal production for fish feed applications.  相似文献   
19.
This paper focuses on the environmental component of sustainability of technology, taking into account the role of industrial ecology. Assessment of environmental sustainability of technology traditionally focuses on immediate impact of technology on the environment through quantifying resource extraction and generated emissions. However, technology does not only exchange materials with the environment but also with the industrial society as a whole, the so-called industrial metabolism. A higher compatibility of a specific technology with the industrial system, as studied in industrial ecology, can result in lower resource extraction and reduced waste emission, indirectly contributing to a better environmental sustainability.Starting from the considerations above and based on the second law of thermodynamics, the paper presents a set of five environmental sustainability indicators for the assessment of products and production pathways, integrating industrial ecology principles. The indicators, all scaled between 0 and 1, take into account: (1) renewability of resources; (2) toxicity of emissions; (3) input of used materials; (4) recoverability of products at the end of their use; (5) process efficiency.The applicability of the elaborated set of indicators is illustrated for different production pathways of alcohols (petrochemical and oleochemical based), polyethylene end-of-life options and electricity production from non-renewable (natural gas and fossil oil) and renewable resources (hydropower, photovoltaic conversion of solar irradiation).  相似文献   
20.
This study is to modify the ecological footprint methodology by incorporating non-renewable or abiotic resources as an additional category. The use of abiotic resources can be quantified as global hectare by using thermodynamic approaches. A detailed case study on various countries including Australia, Belgium, Brazil, Canada, Japan, USA, and Vietnam shows the advantage of using the new modified ecological footprint (EF) as an indicator for sustainable development. The modified EF includes not only biotic resources, but also the abiotic resources. The case study indicates that the modified EF differs from the traditional EF up to 123% in the case of Belgium, and 90% in the case of Australia. For developing countries such as Brazil and Vietnam, the differences are relatively smaller (21% for Brazil and 9.4% for Vietnam). The estimated total ecological footprint of the world using the new method implies more serious problems associated with over consumption than using results from the original ecological footprint method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号