首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   2篇
  国内免费   35篇
安全科学   17篇
废物处理   3篇
环保管理   18篇
综合类   70篇
基础理论   11篇
污染及防治   49篇
评价与监测   1篇
社会与环境   1篇
  2023年   5篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   3篇
  2013年   5篇
  2012年   8篇
  2011年   12篇
  2010年   5篇
  2009年   14篇
  2008年   8篇
  2007年   17篇
  2006年   10篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1995年   2篇
  1992年   1篇
  1989年   1篇
排序方式: 共有170条查询结果,搜索用时 31 毫秒
71.
Cadmium sorption by sodium and thiourea-modified zeolite-rich tuffs   总被引:1,自引:0,他引:1  
In the present investigation, two zeolite-rich tuffs from Guaymas and El Cajon(State of Sonora), which were conditioned with a sodium chloride solution and subsequently modified with a thiourea solution, were chosen to evaluate the removal of Cd from aqueous systems. The zeolitic materials were characterized by scanning electron microscopy and X-ray diffraction. The surface area was also determined. The experiments were performed in a batch system, and the influences of p H, contact time between phases, and the concentration of Cd in the solution on the adsorption by sodium or thiourea-modified zeolite-rich tuff were investigated. It was found that the efficiency of Cd ion removal from aqueous solutions is influenced by the p H of the aqueous systems. The Cd adsorption kinetic data were well fitted to a pseudo-second-order model in all cases. The Langmuir and Langmuir–Freundlich isotherms adequately described the Cd sorption behavior by the zeolite from El Cajon pretreated with Na Cl and the zeolite from Guaymas modified with thiourea, respectively.  相似文献   
72.
Pyrolysis is considered as possible technique to thermally convert waste plastics into chemicals and energy. Literature on experimental findings is extensive, although experiments are mostly performed in a dynamic heating mode, using thermogravimetric analysis (TGA) and at low values of the heating rate (mostly below 30 K/min). The present research differs from literature through the application of far higher heating rates, up to 120 K/min. The use of these dynamic results to define the reaction kinetics necessitates the selection of an appropriate reaction mechanism, and 21 models have been proposed in literature considering the rate limiting step being diffusion, nucleation or the reaction itself.The current research studied the cracking of PET and PS by TGA at different heating rates (temperature ramps). Results were used to check the validity of the proposed mechanisms. Several conclusions are drawn: (i) to obtain fair results, the heating ramp should exceed a minimum value, calculated at 30 K/min for PET and 80 K/min for PS; (ii) application of the majority of the models to experimental findings demonstrated that they do not meet fundamental kinetic considerations and are questionable in their use; and (iii) simple models, with reaction order 1 or 2, provide similar results of the reaction activation energy.A further comparison with literature data for dynamic and isothermal experiments confirms the validity of these selected models. Since TGA results are obtained on a limited amount of sample, with results being a strong function of the applied heating rate, the authors believe that isothermal experiments, preferably on a large scale both towards equipment and/or sample size, are to be preferred.  相似文献   
73.
Constructed wetlands (CWs) for wastewater treatment have evolved substantially over the last decades and have been recognized as an effective means of "green technology" for wastewater treatment. This paper reviews the numerous modeling approaches ranging from simple first-order models to more complex dynamic models of treatment behaviour in CWs. The main objective of the modeling work is to better understand the process in CWs and optimize design criteria. A brief study in this review discusses the efforts taken to describe the process-based model for the efficient removal of pollutants in CWs. Obtaining better insights is essential to understand the hydraulic and biochemical processes in CWs. Currently, employed modeling approaches can be seen in two categories, i.e. "black-box models" and "process-based models". It is evident that future development in wetland technology will depend on improved scientific knowledge of internal treatment mechanisms.  相似文献   
74.
Biosorption studies of Cr(VI) were carried out using waste weed, Salvinia cucullata. Various adsorption parameters were studied, such as agitation speed, contact time, pH, particle size, and concentrations of adsorbent and adsorbate. The equilibrium was achieved in 12 h. A lower pH favoured adsorption of Cr(VI). The kinetics followed pseudo-second-order rate equations. The adsorption isotherm obeyed both the Langmuir and Freundlich models. The calculated activation energy (1.1 kJ mol-1) suggested that the adsorption followed a diffusion-controlled mechanism. Various thermodynamic parameters such as Δ G°, Δ H°, and Δ S° were also calculated. The positive values of enthalpy indicated the endothermic nature of the reaction, and Δ S° showed the increasing randomness at the solid liquid interface of Cr(VI) on the adsorbent, which revealed the ease of adsorption reaction. These thermo-dynamic parameters showed the spontaneity of the reaction. The maximum adsorption of uptake (232 mg g-1) compared well with reported values of similar adsorbents. The rate-determining step was observed to follow an intra-particle diffusion model.  相似文献   
75.
Potassium tungstophosphate is supported on BEA zeolite by in situ synthesis for glyphosate removal. Spectroscopic measurements identified hydrogen bonding as a primal interaction of potassium salt and BEA zeolite. Composites are evaluated for glyphosate herbicide removal and adsorption process is analyzed using two isotherm models. Obtained adsorption capacities for all prepared composites lay between 45.2 and 92.2?mg of glyphosate per gram of investigated composite. Suspension acidity revealed that glyphosate is adsorbed mainly in the zwitter-ion form at the composite surface while the amount of potassium salt in the composites is crucial for the adsorption application. Exceptional adsorption behavior is postulated to come from a high degree of homogeneity among surface active sites which is confirmed by different experimental methods. Temperature programmed desorption of glyphosate coupled with mass spectrometer detected one broad, high-temperature peak which represents overlapped desorption processes from active sights of similar strength. Introduction of potassium tungstophosphate affects active sites present in BEA zeolite for glyphosate desorption and significantly increases the amount of adsorbed pesticide in comparison to BEA zeolite. Supporting of potassium tungstophosphate on BEA zeolite via in situ synthesis procedure enables the formation of highly efficient adsorbents and revealed their perspective environmental application.  相似文献   
76.
The reaction mechanism and kinetics of the simplest Criegee intermediate CH2OO reaction with hydroperoxymethyl formate (HPMF) was investigated at high-level quantum chemistry calculations. HPMF has two reactive functional groups, -C(O)OH and -OOH. The calculated results of thermodynamic data and rate constants indicated that the insertion reactions of CH2OO with –OOH group of HPMF were more favorable than the reactions of CH2OO with -C(O)OH group. The calculated overall rate constant was 2.33 × 10?13 cm3/(molecule?sec) at 298 K and the rate constants decreased as the temperature increased from 200 to 480 K. In addition, we also proved the polymerization reaction mechanism between CH2OO and -OOH of HPMF. This theoretical study interpreted the previous experimental results, and supplied the structures of the intermediate products that couldn't be detected during the experiment.  相似文献   
77.
The reactivity of the herbicide cycloxydim (CD) toward singlet oxygen was studied in organic solution and on wax films to mimic the leaf surface. Experiments in solution were conducted in acetonitrile using phenalenone as a sensitizer. For the experiments in the solid state, phenalenone was included in paraffinic wax films and CD deposited at the film surface. By laser flash photolysis we observed that the triplet of phenalenone reacts with CD with a bimolecular rate constant of (9.6 ± 1)×106 M−1 s−1. However, scavenging experiments using β-carotene as a singlet oxygen quencher showed that the observed CD degradation in aerated acetonitrile involves singlet oxygen essentially. The bimolecular rate constant of reaction of CD with singlet oxygen was evaluated to (1.0 ± 0.2)×107 M−1 s−1. Phenalenone included in the wax films also significantly increased the rate of CD photodegradation, the involvement of singlet oxygen being very likely. The photoproducts formed via the singlet oxygen pathway resulted from the oxidation of the thiol group and/or the cyclohexene ring. This study should help to better understand the fate of CD after its spraying on crops.  相似文献   
78.
Micron-sized poly (methyl methacrylate) (PMMA) with high flammability is widely applied in industries, constructions and transportations. Study on the thermal degradation behaviors of micron-sized PMMA in oxygenous atmosphere, which receives scarce attention to date, can provide valuable guidance for the prevention and mitigation of injuries and damages arising from the micron-sized PMMA dust explosions and fires. In the present study, the thermal degradation characteristics of micron-sized PMMA in air were investigated by thermogravimetry. Deconvolution method using Gauss function coupled with model-free and model-fitting methods was employed to conduct the kinetic modeling. The values of thermodynamic parameters (ΔH, ΔG and ΔS) were estimated. The results indicated that one peak and one shoulder occurred in the mass loss rate (MLR) variations of the micron-sized PMMA degradation in air. The values of MLR at peak and shoulder both decreased with heating rate. Besides, the average value of the MLR varied little with heating rate. The values of MLR at the peak and the average MLR of micron-sized PMMA degradation in air were both less than those of the traditional-sized PMMA degradation in air. The calculated kinetic parameters can be used to well predict the thermal degradation behaviors of micron-sized PMMA in air. Additionally, the micron-sized PMMA in air was easier to decompose than the traditional-sized PMMA in air. Non-spontaneous reactions were involved in the thermo-oxidative degradation of micron-sized PMMA. Besides, with the progressing of thermo-oxidative degradation, less energy was required and pyrolytic products with well-ordered structures may be generated.  相似文献   
79.
Functionalized Granular Activated Carbons (FACs) are used as adsorbents for treating pharmaceutical wastewaters containing Chlorhexidine Gluconate. Chemical modifications of Granular Activated Carbons (GACs) using functionalizing agents like HCl and HF produce FACs. The adsorption capacity of each of FAC-HCl and FAC-HF is found to be higher than GAC. The modelled maximum adsorption capacity for FAC-HCl is 1.02 g/g of adsorbent, 3.49 g/g of adsorbent for FAC-HF and 0.0682 g/g of adsorbent for GAC. This is mainly due to the additional chemisorptions by surface complexation at the functionalized surface sites of the modified GACs. This is also supported by the well-known pseudo-second-order kinetic model. Formation of surface complexes with the functional groups and weakly polar Chlorhexidine Gluconate is well supported by the physical characterization using Energy dispersive X-ray spectroscopy (EDAX), Brunner–Emmett–Teller (BET) test and Fourier Transform Infrared spectroscopy (FTIR) analysis after adsorption. The adsorption capacity of GAC and the FACs increases in the order of FAC-HF > FAC-HCl > GAC conforming to the proportion of the total acidity of the carbon surfaces. Intra-particle diffusion is not the sole rate-controlling factor. An agreement to pseudo-second-order kinetic model, Elovich kinetic model and Boyd's film diffusion model proves that chemisorption is the rate-controlling parameter in this adsorption study.  相似文献   
80.
The standard test method ASTM D 5988-96 for determining the degree and rate of aerobic biodegradation of plastic materials in contact with soil was applied to poly(3-hydroxybutyrate) and poly(-caprolactone). The method proved to be reliable and supplied reproducible measurements of CO2 production, provided potassium (instead of barium) hydroxide was used as a trapping solution. The trends of CO2 evolution, as a function of time, observed for the degradation of polymer powders in soil are similar to those predicted by simple first order kinetics in solution. The experimental data are described by a Michaelis–Menten type model, which accounts for the heterogeneity of the polymer-soil system. The kinetic equation deduced predicts the degradation rate to the proportional to the exposed polymer surface area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号