首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   92篇
  国内免费   212篇
安全科学   19篇
废物处理   6篇
环保管理   32篇
综合类   354篇
基础理论   232篇
污染及防治   65篇
评价与监测   7篇
社会与环境   18篇
灾害及防治   8篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   15篇
  2020年   23篇
  2019年   25篇
  2018年   85篇
  2017年   24篇
  2016年   30篇
  2015年   28篇
  2014年   25篇
  2013年   84篇
  2012年   40篇
  2011年   37篇
  2010年   31篇
  2009年   33篇
  2008年   29篇
  2007年   23篇
  2006年   15篇
  2005年   11篇
  2004年   11篇
  2003年   25篇
  2002年   13篇
  2001年   11篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   26篇
  1994年   13篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   4篇
  1989年   1篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
排序方式: 共有741条查询结果,搜索用时 31 毫秒
101.
The selection of new settlement areas and the construction of safe buildings, as well as rendering built‐up areas safe, are of great importance in mitigating the damage caused by natural disasters. Most cities in Turkey are unprepared for natural hazards. In this paper, Çanakkale, located in a first‐degree seismic zone and sprawled around the Sartçay Delta, is examined in terms of its physical vulnerability to natural hazards. Residential areas are analysed using GIS (geographic information system) and remote‐sensing technologies in relation to selected indicators. Residential areas of the city are divided into zones according to an evaluation of geological characteristics, the built‐up area's features, and urban infrastructure, and four risk zones are determined. The results of the analysis show that the areas of the city suitable for housing are very limited. In addition, the historical centre and the housing areas near Sartçay stream are shown to be most problematic in terms of natural disasters and sustainability.  相似文献   
102.
藻与细菌通常共生于淡水生境,形成藻-菌共生体系,藻际细菌是水体生态系统中的重要组成部分,对藻的消长起重要的调控作用,但有关藻际微环境中藻与细菌的互作机制还不清楚. 采用传统的细菌平板培养方法,从太湖优势水华藻——铜绿微囊藻(Microcystis aeruginosa)细胞表面分离出一株藻际细菌Ma-B1,基于生理、生化试验和16S rRNA基因序列分析,初步鉴定为甲基营养芽孢杆菌(Bacillus methylotrophicus). 通过测定细胞生长,分析藻-菌相互作用机理. 结果表明:一定浓度(>60 μg/mL)的Ma-B1的胞外代谢物可显著抑制铜绿微囊藻的生长(培养基为BG11,28 ℃/日,22 ℃/夜,3 000 lx,光暗比为14 h∶10 h);铜绿微囊藻的胞外滤液(500 μL/mL)对Ma-B1的生长有一定的促进作用,但其总滤液(500 μL/mL)显著促进Ma-B1的生长;Ma-B1细胞对铜绿微囊藻的生长没有显著影响,而高浓度(藻菌比10∶1)的铜绿微囊藻细胞则可显著抑制Ma-B1的生长. 铜绿微囊藻与Ma-B1之间存在复杂的相互抑制或促进关系,共同影响着藻、菌在自然水体生态系统中的消长.   相似文献   
103.
The present study was carried out to evaluate the question of whether or not royal jelly affects N-acetylation and metabolism of 2-aminofluorene (2-AF) in the human liver tumor cell line (J 5). N-acetylation and metabolism of 2-AF in intact J5 cells was determined by using high performance liquid chromatography for the amounts of acetylated and nonacetylated 2-AF and profile of 2-AF metabolism. The results indicated that royal jelly displayed a dose-dependent inhibition of N-acetylation of 2-AF in J5 cells. Royal jelly also decreased the profile of 2-AF metabolites in J5 cells. This report is the first demonstration which showed that royal jelly affects N-acetylation of 2-AF in human liver tumor cells (J5).  相似文献   
104.
The environmental impact of nanotechnology has caused a great concern. Many in vitro studies showed that many types of nanoparticles were cytotoxic. However, whether these nanoparticles caused cell membrane damage was not well studied. F2-isoprostanes are specific products of arachidonic acid peroxidation by nonenzymatic reactive oxygen species and are considered as reliable biomarkers of oxidative stress and lipid peroxidation. In this article, we investigated the cytotoxicity of different nanoparticles and the degree of cellular membrane damage by using F2-isoprostanes as biomarkers after exposure to nanoparticles. The human lung epithelial cell line A549 was exposed to four silica and metal oxide nanoparticles: SiO2 (15 nm), CeO2 (20 nm), Fe2O3 (30 nm), and ZnO (70 nm). The levels of F2-isoprostanes were determined by using high-performance liquid chromatography/mass spectrometry. The F2-isoprostanes’ peak was identified by retention time and molecular ion m/z at 353. Oasis HLB cartridge was used to extract F2-isoprostanes from cell medium. The results showed that SiO2, CeO2, and ZnO nanoparticles increased F2-isoprostanes levels significantly in A549 cells. Fe2O3 nanoparticle also increased F2-isoprostanes level, but was not significant. This implied that SiO2, CeO2, ZnO, and Fe2O3 nanoparticles can cause cell membrane damage due to the lipid peroxidation. To the best of our knowledge, this is the first report on the investigation of effects of cellular exposure to metal oxide and silica nanoparticles on the cellular F2-isoprostanes levels.  相似文献   
105.
Lead (Pb) is a heavy metal, known to induce oxidative stress and produce damage to the antioxidant defence system ultimately leading to cell death. Antioxidants such as epigallocatechin 3-gallate (EGCG), a green tea polyphenol, was shown to play a protective role during Pb-exposure. In this study, human SH-SY5Y neuroblastoma cells were exposed to different concentrations (0.01–10?µM) of Pb for 48?h to determine effects on the viability of cells. It was observed that IC50 was at 5?µM and at this concentration the cells exhibited a significant increase in caspase-3 activity, an indicator of apoptosis at least by 10-fold and the decrease of 59.4% in glutathione (GSH) content. The total cellular prostaglandin-E2 (PGE2) level was found to be elevated at least 10-fold upon Pb exposure. However, the effects of Pb on cells pre-incubated with 50?µM EGCG followed by 5?µM Pb showed 40% inhibition in cell viability, 17.3% decrease in caspase-3 activity, 23% increase in GSH content, and 11.4% fall in PGE2 levels when compared with cells exposed to Pb only. Data suggest that EGCG exerted a significant protection to cell viability in preventing cell death and elevation in levels of GSH in cells exposed to Pb. However, EGCG did not elicit any significant effect on release of PGE2 indicating the nature of EGCG as an effective anti-apoptotic, antioxidant, and anti-inflammatory agent.  相似文献   
106.
The aim of the present study was to evaluate the potential toxicity and general mechanisms involved in single walled carbon nanotubes (SWCNTs)-induced cytotoxicity using human embryonic kidney cell line (HEK293) cells. Carbon nanotubes (coded as CNT) used in this study were synthesized by the chemical vapor deposition method. To elucidate the possible mechanisms underlying SWCNT-induced cytotoxicity, cell viability, cell membrane damage (lactate dehydrogenase activity (LDH) assay), reduced glutathione (GSH), interleukin-8 (IL-8) and lipid peroxidation products levels were quantitatively assessed following SWCNT exposure for 48 hr using HEK293 cells. Exposure of cells to SWCNT at 3–300 μg/ml produced significant reduction in cell viability in a concentration-dependent manner. The IC50 value of SWCNT was found to be 87.58 μg/ml. Exposure of HEK cells to SWCNT at 10–100 μg/ml resulted in concentration-dependent cell membrane damage, increased production of IL-8, elevated levels of thiobarbituric acid reactive substances like malondialdehyde and decreased intracellular GSH levels. In summary, exposure to SWCNT resulted in a concentration-dependent cytotoxicity in cultured HEK293 cells that was associated with increased oxidative stress.  相似文献   
107.
Chromate uptake, reduction, cytotoxicity and mutagenicity were studied with human red blood cells, Chinese hamster ovary (CHO) cells and/or Salmonella typhimurium mutant cells. All cell types rapidly took up chromates whereas chromium(III) salts were excluded under the experimental conditions. Red blood cells reduced and accumulated chromium from chromate. At concentrations above 0.1 mM, chromate inactivated the red cell chromate carrier. Chromate above 0.01 mM inhibited CHO cell proliferation irrespective of the cations present. Chromate and two chromium(III) complexes were mutagenic with Salmonella mutants in the Ames’ assay. A model for chromate metabolism and genotoxicity is proposed.  相似文献   
108.
The effects of NiCl2 were studied in two human cell lines, HeLa and diploid embryonic fibroblasts as well as in V79 Chinese hamster cells and in L‐A mouse fibroblasts. NiCl2 produces a dose‐dependent depression of proliferation, mitotic rate, and viability, accompanied by an increasing release of lactic dehydrogenase and stimulation of lactic acid production. The plating efficiency is reduced, as are DNA and protein synthesis and, to a lesser degree, RNA synthesis.

The cytotoxicity of NiCl2 is comparable in degree to those of PbCl2 and MnCl2, but is weaker than those of HgCl2 and CdCl2. However, the different sensitivities of different cell lines must also be considered.

NiCl2 effects are more severe in serum‐free medium than in medium containing serum or serum albumin indicating that serum constituents, notably albumin, bind the metal effectively and inhibit cellular uptake; this confirms earlier reports on the serum binding and slow uptake of NiCl2.

Synchronized cells are most sensitive in the Gl and early S phases of the cell cycle. In the Painter test the depression of DNA synthesis persists following cessation of exposure to NiCI2. These findings contribute an explanation for the known genotoxic effects of nickel.  相似文献   
109.
The carcinogenicity of beryllium to several animal species is well established and evidence exists which strongly suggests that this is the case in human exposure. In this review several biochemical properties of the metallocarcinogen are considered including, the causation of cell transformation, and infidelity of DNA synthesis, inhibition of cell division and enzyme induction, and interference with regulatory mechanisms controlling gene expression. These effects are discussed in relation to beryllium chemistry, cellular accumulation mechanisms and distribution to subcellular organdies and molecular targets. It is suggested that the ultimate location and interactions of the metal ion in cell nuclei and its selective inhibition of certain protein phosphorylation reactions in particular are the biochemical effects potentially most relevant to induction of beryllium carcinogenesis.  相似文献   
110.
Literature data concerning the genotoxicity of cobalt salts have been conflicting. To establish appropriate incubation conditions, we conducted a series of uptake studies, before genotoxicity was determined by DNA strand break induction in HeLa cells and mutagenicity in V79 Chinese hamster cells. Co(II) is taken up by HeLa cells in a concentration‐dependent manner and is accumulated inside the cell. The uptake is preceded by a fast association step to the outer membrane, with no saturation up to 24 h. DNA strand breaks as determined by nucleoid sedimentation are induced at concentrations as low as 50μMCoCl2. The induction is time‐dependent, showing the highest number of breaks after 4h incubation with no further increase up to 24h. CoCl2 is mutagenic at the HPRT‐locus, enhancing the spontaneous mutation frequency 4.2‐fold at 100μ?. Besides direct interactions with DNA, the mutagenicity of CoCl2 could also be due to a decrease in the Fidelity of DNA polymerisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号